【題目】一家公司計(jì)劃生產(chǎn)某種小型產(chǎn)品的月固定成本為1萬元,每生產(chǎn)1萬件需要再投入2萬元,設(shè)該公司一個(gè)月內(nèi)生產(chǎn)該小型產(chǎn)品x萬件并全部銷售完,每萬件的銷售收入為4﹣x萬元,且每萬件國(guó)家給予補(bǔ)助2e﹣ 萬元.(e為自然對(duì)數(shù)的底數(shù),e是一個(gè)常數(shù))
(1)寫出月利潤(rùn)f(x)(萬元)關(guān)于月產(chǎn)量x(萬件)的函數(shù)解析式
(2)當(dāng)月產(chǎn)量在[1,2e]萬件時(shí),求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤(rùn)最大值(萬元)及此時(shí)的月生成量值(萬件).(注:月利潤(rùn)=月銷售收入+月國(guó)家補(bǔ)助﹣月總成本)

【答案】
(1)解:由于:月利潤(rùn)=月銷售收入+月國(guó)家補(bǔ)助﹣月總成本,可得


(2)解:f(x)=﹣x2+2(e+1)x﹣2elnx﹣2的定義域?yàn)閇1,2e],

列表如下:

x

(1,e)

e

(e,2e]

f'(x)

+

0

f(x)

極大值f(e)

由上表得:f(x)=﹣x2+2(e+1)x﹣2elnx﹣2在定義域[1,2e]上的最大值為f(e).

且f(e)=e2﹣2.即:月生產(chǎn)量在[1,2e]萬件時(shí),該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤(rùn)最大值為f(e)=e2﹣2,此時(shí)的月生產(chǎn)量值為e(萬件).


【解析】(1)由月利潤(rùn)=月銷售收入+月國(guó)家補(bǔ)助﹣月總成本,即可列出函數(shù)關(guān)系式;(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,現(xiàn)有一迷失方向的小青蛙在3處,它每跳動(dòng)一次可以等可能地進(jìn)入相鄰的任意一格(若它在5處,跳動(dòng)一次,只能進(jìn)入3處,若在3處,則跳動(dòng)一次可以等機(jī)會(huì)進(jìn)入1,2,4,5處),則它在第三次跳動(dòng)后,首次進(jìn)入5處的概率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個(gè)面包分給5個(gè)人,使每個(gè)人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問最小一份為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)當(dāng)a=b=2時(shí),證明:函數(shù)f(x)不是奇函數(shù);
(2)設(shè)函數(shù)f(x)是奇函數(shù),求a與b的值;
(3)在(2)條件下,判斷并證明函數(shù)f(x)的單調(diào)性,并求不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,AD⊥平面PAB,APAB

1)求證:CDAP;

2)若CDPD,求證:CD∥平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B為曲線Cy=上兩點(diǎn),AB的橫坐標(biāo)之和為4.

(1)求直線AB的斜率;

(2)設(shè)M為曲線C上一點(diǎn),CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中圓C的參數(shù)方程為為參數(shù)),以原點(diǎn)O為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求圓C的直角坐標(biāo)方程及其圓心C的直角坐標(biāo);

(2)設(shè)直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,空氣質(zhì)量成為人們?cè)絹碓疥P(guān)注的話題,空氣質(zhì)量指數(shù)(,簡(jiǎn)稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級(jí), 為優(yōu); 為良; 為輕度污染; 為中度污染; 為重度污染;大于300為嚴(yán)重污染.環(huán)保部門記錄了2017年某月哈爾濱市10天的的莖葉圖如下:

(1)利用該樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良()的天數(shù);(按這個(gè)月總共30天計(jì)算)

(2)現(xiàn)工作人員從這10天中空氣質(zhì)量為優(yōu)良的日子里隨機(jī)抽取2天進(jìn)行某項(xiàng)研究,求抽取的2天中至少有一天空氣質(zhì)量是優(yōu)的概率;

(3)將頻率視為概率,從本月中隨機(jī)抽取3天,記空氣質(zhì)量?jī)?yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.

(1)求二面角的余弦值;

(2)設(shè)是棱上一點(diǎn),的中點(diǎn),若與平面所成角的正弦值為,求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案