【題目】設(shè)A,B為曲線Cy=上兩點(diǎn),AB的橫坐標(biāo)之和為4.

(1)求直線AB的斜率;

(2)設(shè)M為曲線C上一點(diǎn),CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

【答案】(1)1(2)

【解析】試題分析:(1)由直線斜率公式可得AB的斜率,再根據(jù)AB的橫坐標(biāo)之和為4,得AB的斜率.(2)先根據(jù)導(dǎo)數(shù)幾何意義得M點(diǎn)坐標(biāo),再根據(jù)直角三角形性質(zhì)得,(AB的中點(diǎn)為N),設(shè)直線AB的方程為,與拋物線方程聯(lián)立,利用兩點(diǎn)間距離公式以及弦長(zhǎng)公式可得關(guān)系式,解得.即得直線AB的方程為.

試題解析:解:(1)設(shè)Ax1y1),Bx2,y2),則 , ,x1+x2=4,

于是直線AB的斜率.

(2)由,得.

設(shè)Mx3,y3),由題設(shè)知,解得,于是M(2,1).

設(shè)直線AB的方程為,故線段AB的中點(diǎn)為N(2,2+m),|MN|=|m+1|.

代入.

當(dāng),即時(shí), .

從而.

由題設(shè)知,即,解得.

所以直線AB的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量, ,且函數(shù).

)當(dāng)函數(shù)上的最大值為3時(shí),求的值;

)在()的條件下,若對(duì)任意的,函數(shù), 的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),試確定的值.并求函數(shù)上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在區(qū)間[0,a]上的函數(shù)f(x)的圖象如圖所示,記以A(0,f(0)),B(a,f(a)),C(x,f(x))為頂點(diǎn)的三角形的面積為S(x),則函數(shù)S(x)的導(dǎo)函數(shù)S′(x)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊ABBC的長(zhǎng)分別為a厘米和b厘米,其中ab

(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;

(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家公司計(jì)劃生產(chǎn)某種小型產(chǎn)品的月固定成本為1萬元,每生產(chǎn)1萬件需要再投入2萬元,設(shè)該公司一個(gè)月內(nèi)生產(chǎn)該小型產(chǎn)品x萬件并全部銷售完,每萬件的銷售收入為4﹣x萬元,且每萬件國(guó)家給予補(bǔ)助2e﹣ 萬元.(e為自然對(duì)數(shù)的底數(shù),e是一個(gè)常數(shù))
(1)寫出月利潤(rùn)f(x)(萬元)關(guān)于月產(chǎn)量x(萬件)的函數(shù)解析式
(2)當(dāng)月產(chǎn)量在[1,2e]萬件時(shí),求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤(rùn)最大值(萬元)及此時(shí)的月生成量值(萬件).(注:月利潤(rùn)=月銷售收入+月國(guó)家補(bǔ)助﹣月總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于R上的可導(dǎo)函數(shù)f(x),若a>b>1且有(x﹣1)f′(x)≥0,則必有(
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是﹣3,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(﹣1,1)上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游景區(qū)的景點(diǎn)A處和B處之間有兩種到達(dá)方式,一種是沿直線步行,另一種是沿索道乘坐纜車,現(xiàn)有一名游客從A處出發(fā),以50m/min的速度勻速步行,30min后到達(dá)B處,在B處停留20min后,再乘坐纜車回到A處.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為150m/mm.
(1)求該游客離景點(diǎn)A的距離y(m)關(guān)于出發(fā)后的時(shí)間x(mm)的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)做出(1)中函數(shù)的圖象,并求該游客離景點(diǎn)A的距離不小于1000m的總時(shí)長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)積為,即.

(1)若數(shù)列為首項(xiàng)為2016,公比為的等比數(shù)列,

①求的表達(dá)式;②當(dāng)為何值時(shí), 取得最大值;

(2)當(dāng)時(shí),數(shù)列都有成立,

求證: 為等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案