【題目】定義在區(qū)間[0,a]上的函數(shù)f(x)的圖象如圖所示,記以A(0,f(0)),B(a,f(a)),C(x,f(x))為頂點(diǎn)的三角形的面積為S(x),則函數(shù)S(x)的導(dǎo)函數(shù)S′(x)的圖象大致是(

A.
B.
C.
D.

【答案】D
【解析】解:連接AB,BC,CA,以AB為底,C到AB的距離為高h(yuǎn).讓C從A運(yùn)動(dòng)到B,明顯h是一個(gè)平滑的變化,這樣S(x)也是平滑的變化.
因?yàn)楹瘮?shù)S(x)= |AB|h,其中h為點(diǎn)C到直線AB的距離.|AB|為定值.
當(dāng)點(diǎn)C在(0,x1]時(shí),h越來(lái)越大,s也越來(lái)越大,即原函數(shù)遞增,故導(dǎo)函數(shù)為正;
當(dāng)點(diǎn)C在[x1 , x2)時(shí),h越來(lái)越小,s也越來(lái)越小,即原函數(shù)遞減,故導(dǎo)函數(shù)為負(fù);變化率的絕對(duì)值由小邊大;
當(dāng)點(diǎn)C在(x2 , x3]時(shí),h越來(lái)越大,s也越來(lái)越大,即原函數(shù)遞增,故導(dǎo)函數(shù)為正;變化率由大變小;
當(dāng)點(diǎn)C在[x3 , a)時(shí),h越來(lái)越小,s也越來(lái)越小,即原函數(shù)遞減,故導(dǎo)函數(shù)為負(fù).
故選 D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )=
(Ⅰ)求f(x)的解析式,
(Ⅱ)用函數(shù)單調(diào)性的定義證明f(x)在(﹣1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+mx+n有兩個(gè)零點(diǎn)﹣1與3.
(1)求出函數(shù)f(x)的解析式,并指出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若g(x)=f(|x|)在x1 , x2∈[t,t+1]是增函數(shù),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的值域?yàn)榧螦,關(guān)于x的不等式 的解集為B,集合 ,集合D={x|m+1≤x<2m﹣1}(m>0)
(1)若A∪B=B,求實(shí)數(shù)a的取值范圍;
(2)若DC,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個(gè)面包分給5個(gè)人,使每個(gè)人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問(wèn)最小一份為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1底面四邊形ABCD為菱形,A1AAB2,∠ABC,EF分別是BC,A1C的中點(diǎn)

(1)求異面直線EF,AD所成角的余弦值;

(2)點(diǎn)M在線段A1D上, .若CM∥平面AEF,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)
(1)當(dāng)a=b=2時(shí),證明:函數(shù)f(x)不是奇函數(shù);
(2)設(shè)函數(shù)f(x)是奇函數(shù),求a與b的值;
(3)在(2)條件下,判斷并證明函數(shù)f(x)的單調(diào)性,并求不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,B為曲線Cy=上兩點(diǎn),AB的橫坐標(biāo)之和為4.

(1)求直線AB的斜率;

(2)設(shè)M為曲線C上一點(diǎn),CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,平面平面, 中點(diǎn),且.

(Ⅰ)求證: 平面;

(Ⅱ)求證: ;

(Ⅲ)求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案