【題目】如下圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,平面平面, , 中點(diǎn),且.

(Ⅰ)求證: 平面

(Ⅱ)求證: ;

(Ⅲ)求與平面所成角的正弦值.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ)

【解析】試題分析:(I)由中位線定理得出 ,故平面ACF;
由面面垂直的性質(zhì)得出平面CDE,故而 ,又 ,于是平面DAE,從而 ;
過(guò)F于點(diǎn)M,連接CM,,則可證平面ABCD,于是 為所求的線面角,利用勾股定理和相似三角形求出, ,得出 .

試題解析:(Ⅰ)證明:如下圖,連接BDAC交于點(diǎn)O,

連接OF,

為正方形,

BD的中點(diǎn),

DE的中點(diǎn),

,

平面ACF,

平面ACF,

平面ACF

(Ⅱ)證明: 平面CDE

平面CDE,

,

為正方形,

,

AD, 平面DAE,

平面DAE,

平面DAE,

(Ⅲ)解:如圖,過(guò)F于點(diǎn)M,連接CM

平面DAE, 平面ABCD,

平面DAE,

平面 ,

平面ABCD,

FC在平面ABCD上的射影,

FC與平面ABCD所成角,

, , ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在區(qū)間[0,a]上的函數(shù)f(x)的圖象如圖所示,記以A(0,f(0)),B(a,f(a)),C(x,f(x))為頂點(diǎn)的三角形的面積為S(x),則函數(shù)S(x)的導(dǎo)函數(shù)S′(x)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過(guò)原點(diǎn),且在原點(diǎn)處的切線斜率是﹣3,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(﹣1,1)上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游景區(qū)的景點(diǎn)A處和B處之間有兩種到達(dá)方式,一種是沿直線步行,另一種是沿索道乘坐纜車,現(xiàn)有一名游客從A處出發(fā),以50m/min的速度勻速步行,30min后到達(dá)B處,在B處停留20min后,再乘坐纜車回到A處.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為150m/mm.
(1)求該游客離景點(diǎn)A的距離y(m)關(guān)于出發(fā)后的時(shí)間x(mm)的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)做出(1)中函數(shù)的圖象,并求該游客離景點(diǎn)A的距離不小于1000m的總時(shí)長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 a∈R,函數(shù) f(x)=a﹣
(1)證明:f(x)在(﹣∞,+∞)上單調(diào)遞增;
(2)若f(x)為奇函數(shù),求:
①a的值;
②f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市2016年11月1日11月30日對(duì)空氣污染指數(shù)的監(jiān)測(cè)數(shù)據(jù)如下(主要污染物可吸入顆粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.

樣本頻率分布表:

分組

頻數(shù)

頻率

2

1

4

6

10

2

(Ⅰ)完成頻率分布表;

(Ⅱ)作出頻率分布直方圖;

(Ⅲ)根據(jù)國(guó)家標(biāo)準(zhǔn),污染指數(shù)在050之間時(shí),空氣質(zhì)量為優(yōu);在51100之間時(shí)為良;在101150之間時(shí),為輕微污染;在151200之間時(shí),為輕度污染.請(qǐng)你依據(jù)所給數(shù)據(jù)和上述標(biāo)準(zhǔn),對(duì)該市的空氣質(zhì)量給出一個(gè)簡(jiǎn)短評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)積為,即.

(1)若數(shù)列為首項(xiàng)為2016,公比為的等比數(shù)列,

①求的表達(dá)式;②當(dāng)為何值時(shí), 取得最大值;

(2)當(dāng)時(shí),數(shù)列都有成立,

求證: 為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或下滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p> ),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
(1)求p的值;
(2)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案