【題目】已知函數(shù)f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率是﹣3,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(﹣1,1)上不單調(diào),求a的取值范圍.

【答案】
(1)解:由題意得f′(x)=3x2+2(1﹣a)x﹣a(a+2)

,

解得b=0,a=﹣3或a=1


(2)解:函數(shù)f(x)在區(qū)間(﹣1,1)不單調(diào),等價于導(dǎo)函數(shù)f′(x)[是二次函數(shù)],在(﹣1,1有實數(shù)根但無重根.

∵f′(x)=3x2+2(1﹣a)x﹣a(a+2)=(x﹣a)[3x+(a+2)],

令f′(x)=0得兩根分別為x=a與x=

若a= 即a=﹣ 時,此時導(dǎo)數(shù)恒大于等于0,不符合題意,

當(dāng)兩者不相等時即a≠﹣

有a∈(﹣1,1)或者 ∈(﹣1,1)

解得a∈(﹣5,1)且a≠﹣

綜上得參數(shù)a的取值范圍是(﹣5,﹣ )∪(﹣ ,1)


【解析】(1)先求導(dǎo)數(shù):f′(x)=3x2+2(1﹣a)x﹣a(a+2),再利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.列出關(guān)于a,b等式解之,從而問題解決.(2)根據(jù)題中條件:“函數(shù)f(x)在區(qū)間(﹣1,1)不單調(diào),”等價于“導(dǎo)函數(shù)f′(x)在(﹣1,1)既能取到大于0的實數(shù),又能取到小于0的實數(shù)”,由于導(dǎo)函數(shù)是一個二次函數(shù),有兩個根,故問題可以轉(zhuǎn)化為到少有一根在區(qū)間(﹣1,1)內(nèi),先求兩根,再由以上關(guān)系得到參數(shù)的不等式,解出兩個不等式的解集,求其并集即可;
【考點精析】利用導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性對題目進(jìn)行判斷即可得到答案,需要熟知通過圖像,我們可以看出當(dāng)點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當(dāng)點趨近于時,函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+mx+n有兩個零點﹣1與3.
(1)求出函數(shù)f(x)的解析式,并指出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若g(x)=f(|x|)在x1 , x2∈[t,t+1]是增函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)當(dāng)a=b=2時,證明:函數(shù)f(x)不是奇函數(shù);
(2)設(shè)函數(shù)f(x)是奇函數(shù),求a與b的值;
(3)在(2)條件下,判斷并證明函數(shù)f(x)的單調(diào)性,并求不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)AB為曲線Cy=上兩點,AB的橫坐標(biāo)之和為4.

(1)求直線AB的斜率;

(2)設(shè)M為曲線C上一點,CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中圓C的參數(shù)方程為為參數(shù)),以原點O為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求圓C的直角坐標(biāo)方程及其圓心C的直角坐標(biāo);

(2)設(shè)直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然常數(shù),a∈R.
(1)討論a=1時,函數(shù)f(x)的單調(diào)性和極值;
(2)求證:在(1)的條件下,f(x)>g(x)+
(3)是否存在實數(shù)a使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,空氣質(zhì)量成為人們越來越關(guān)注的話題,空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級, 為優(yōu); 為良; 為輕度污染; 為中度污染; 為重度污染;大于300為嚴(yán)重污染.環(huán)保部門記錄了2017年某月哈爾濱市10天的的莖葉圖如下:

(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算)

(2)現(xiàn)工作人員從這10天中空氣質(zhì)量為優(yōu)良的日子里隨機抽取2天進(jìn)行某項研究,求抽取的2天中至少有一天空氣質(zhì)量是優(yōu)的概率;

(3)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在四棱錐中,底面是邊長為的正方形,平面平面, , 中點,且.

(Ⅰ)求證: 平面;

(Ⅱ)求證:

(Ⅲ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且

(1)求證:

(2)若平面與平面的交線為,求證:

查看答案和解析>>

同步練習(xí)冊答案