【題目】如圖所示多面體的底面是菱形,,平面,平面.

I)求證:平面;

II)若,求三棱錐的體積.

【答案】I)證明見解析;(II

【解析】

I)由線面垂直的性質(zhì)可得,即可得到平面,再根據(jù)四邊形為菱形,可證平面,從而得到平面平面,即可得證.

II)由(I)可知點Q到平面的距離等于點B到平面的距離,取的中點E,連接,,可證平面,最后根據(jù)計算可得;

I)因為平面,平面,所以.

平面,平面,所以平面.

又四邊形為菱形,所以.

平面,平面,

所以平面.

,平面平面,

所以平面平面.

因為平面,

所以平面.

(II)(I)可知,平面,所以點Q到平面的距離等于點B到平面的距離.

如圖,取的中點E,連接.

因為四邊形是邊長為2的菱形,

所以是邊長為2的等邊三角形,

所以,且.

,平面,平面,

所以平面.

所以點Q到平面的距離即為的長,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出下列三個結(jié)論:

①當時,函數(shù)的單調(diào)遞減區(qū)間為

②若函數(shù)無最小值,則的取值范圍為

③若,則,使得函數(shù).恰有3個零點,,且

其中,所有正確結(jié)論的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù)有兩個極值點),若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省從2021年開始,高考采用取消文理分科,實行的模式,其中的“1”表示每位學生必須從物理、歷史中選擇一個科目且只能選擇一個科目.某校高一年級有2000名學生(其中女生900人).該校為了解高一年級學生對“1”的選課情況,采用分層抽樣的方法抽取了200名學生進行問卷調(diào)查,下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.

性別

選擇物理

選擇歷史

總計

男生

________

50

女生

30

________

總計

________

________

200

1)求,的值;

2)請你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認為選擇科目與性別有關(guān)?說明你的理由.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)對任意的都有,且的最大值為,下列四個結(jié)論:①的一個極值點;②若為奇函數(shù),則的最小正周期;③若為偶函數(shù),則上單調(diào)遞增;④的取值范圍是.其中一定正確的結(jié)論編號是(

A.①②B.①③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自由購是通過自助結(jié)算方式購物的一種形式. 某大型超市為調(diào)查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結(jié)果整理如下:

20以下

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

(Ⅰ)現(xiàn)隨機抽取 1 名顧客,試估計該顧客年齡在且未使用自由購的概率;

(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用表示這3人中年齡在的人數(shù),求隨機變量的分布列及數(shù)學期望;

(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的導函數(shù)的單調(diào)性;

(2)若函數(shù)處取得極大值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

1)若,求函數(shù)處的切線方程;

2)若函數(shù)在定義域上恰有兩個不同的零點,求實數(shù)a的取值范圍;

3)設(shè)函數(shù)在區(qū)間)上存在極值,求證:.

查看答案和解析>>

同步練習冊答案