【題目】在直角坐標系 中,以原點 為極點,以 軸正半軸為極軸,圓 的極坐標方程為
(1)將圓 的極坐標方程化為直角坐標方程;
(2)過點 作斜率為1直線 與圓 交于 兩點,試求 的值.

【答案】
(1)解:由 ,可得 ,
,∴

(2)解:過點 作斜率為 的直線 的參數(shù)方程為 為參數(shù)).
代入 ,
設點 對應的參數(shù)分別為 ,則 .
的幾何意義可得 .
【解析】(1)根據(jù)題意把直線的參數(shù)方程化為一般式即可得出化簡的圓的極坐標方程運用極坐標與一般方程的互化關系即可求出圓的普通方程。(2)首先求出直線l的參數(shù)方程代入到圓的非常重得到關于t的方程結合韋達定理以及參數(shù)t的幾何意義即可求出結果。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的三個內角A,B,C的對邊分別a,b,c,已知 , ,且
(1)證明sinBsinC=sinA;
(2)若a2+c2﹣b2= ac,求tanC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 則方程 的根的個數(shù)為( )
A.5
B.4
C.1
D.無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,其中 ,若存在唯一的整數(shù) ,使得 ,則 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 是拋物線 的焦點,點 在該拋物線上且位于 軸的兩側, (其中 為坐標原點),則 面積的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐 中,底面 為正方形, 平面 ,且 ,點 在線段 上,且 .

(Ⅰ)證明:平面 平面
(Ⅱ)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐 外接球的表面積為32 , ,三棱錐 的三視圖如圖所示,則其側視圖的面積的最大值為( )

A.4
B.
C.8
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的四個頂點組成的四邊形的面積為 ,且經(jīng)過點

(1)求橢圓 的方程;
(2)若橢圓 的下頂點為 ,如圖所示,點 為直線 上的一個動點,過橢圓 的右焦點 的直線 垂直于 ,且與 交于 兩點,與 交于點 ,四邊形 的面積分別為 .求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知 是直角梯形, , , , 平面

(Ⅰ) 上是否存在點 使 平面 ,若存在,指出 的位置并證明,若不存在,請說明理由;(Ⅱ)證明:
(Ⅲ)若 ,求點 到平面 的距離.

查看答案和解析>>

同步練習冊答案