【題目】設(shè)函數(shù) ,其中 ,若存在唯一的整數(shù) ,使得 ,則 的取值范圍是( )
A.
B.
C.
D.

【答案】A
【解析】設(shè) . 恒過( , 恒過(1,0)
因為存在唯一的整數(shù) ,使得 ,所以存在唯一的整數(shù) ,使得 在直線 下方.
因為 ,
所以當(dāng) 時, , 單調(diào)遞減;
當(dāng) 時, , 單調(diào)遞增.
所以 .作出函數(shù)圖象如圖所示:

根據(jù)題意得: ,解得: .
故答案為:A.
根據(jù)題目中所給的條件的特點,先構(gòu)造函數(shù)g(x)=ex(2x-1),h(x)=mx-m,將原問題轉(zhuǎn)化為:存在唯一的整數(shù)x0使得g(x0)在直線y=mx-m的下方.最后利用導(dǎo)數(shù)知識求函數(shù)的極值,結(jié)合圖形可得關(guān)于字母m的不等關(guān)系,解關(guān)于m的不等式組可得m 的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,函數(shù) 的最小值為4.
(1)求 的值;
(2)求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)為奇函數(shù)的是( )
A.y=x3+3x2
B.y=
C.y=xsin x
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 的參數(shù)方程為 為參數(shù)),直線 的參數(shù)方程為 為參數(shù)).
(Ⅰ)求曲線 和直線 的普通方程;
(Ⅱ)若點 為曲線 上一點,求點 到直線 的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),直線 的參數(shù)方程為 為參數(shù)),設(shè) 的交點為 ,當(dāng) 變化時, 的軌跡為曲線 .
(1)寫出 的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線 的極坐標(biāo)方程為 , 為曲線 上的動點,求點 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)討論 的單調(diào)性;
(2)若 有兩個極值點 , ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,以原點 為極點,以 軸正半軸為極軸,圓 的極坐標(biāo)方程為
(1)將圓 的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點 作斜率為1直線 與圓 交于 兩點,試求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 與直線 相切.
(1)若直線 與圓 交于 兩點,求
(2)設(shè)圓 軸的負(fù)半軸的交點為 ,過點 作兩條斜率分別為 的直線交圓 兩點,且 ,試證明直線 恒過一定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合U=R,A={x|x2x-2<0},B={x|y=ln(1-x)},則圖中陰影部分所表示的集合是( )

A.{x|x≥1}
B.{x|1≤x<2}
C.{x|0<x≤1}
D.{x|x≤1}

查看答案和解析>>

同步練習(xí)冊答案