【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測(cè)可知,進(jìn)入21世紀(jì)以來(lái),該產(chǎn)品的產(chǎn)量平穩(wěn)增長(zhǎng).記2009年為第1年,且前4年中,第x年與年產(chǎn)量f(x) 萬(wàn)件之間的關(guān)系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三種函數(shù)模型之一:f(x)=axb,f(x)=2xa,f(x)=logxa.

(1)找出你認(rèn)為最適合的函數(shù)模型,并說(shuō)明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國(guó)對(duì)該產(chǎn)品進(jìn)行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計(jì)減少30%,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.

【答案】(1) f(x)=x,x∈N. (2) 9.1萬(wàn)件.

【解析】試題分析:(1)分別代人不同模型,確定a,b值,再代人第三或四個(gè)量驗(yàn)證是否符合(2)先按模型計(jì)算2015年的年產(chǎn)量,再計(jì)算實(shí)際年產(chǎn)量.

試題解析:解:(1)符合條件的是f(x)=axb.

若模型為f(x)=2xa,則由f(1)=21a=4,得a=2,即f(x)=2x+2,

此時(shí)f(2)=6, f(3)=10, f(4)=18,與已知相差太大,不符合.

若模型為f(x)=logxa,則f(x)是減函數(shù),與已知不符合.

由已知得解得

所以f(x)=x,x∈N.

(2)2015年預(yù)計(jì)年產(chǎn)量為f(7)=×7+=13,2015年實(shí)際年產(chǎn)量為13×(1-30%)=9.1,

答:最適合的模型解析式為f(x)x,x∈N .2015年的實(shí)際產(chǎn)量為9.1萬(wàn)件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)設(shè), 是曲線圖象上的兩個(gè)相異的點(diǎn),若直線的斜率恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù)有兩個(gè)極值點(diǎn) ,且,若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線

(1)求曲線在點(diǎn)處的切線方程;

(2)過(guò)原點(diǎn)作曲線的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的方程為x2y24,過(guò)點(diǎn)M(0,1)的直線l交圓于點(diǎn)A、BO是坐標(biāo)原點(diǎn),點(diǎn)PAB的中點(diǎn),當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究某種藥物對(duì)“H1N11”病毒的治療效果時(shí),進(jìn)行動(dòng)物試驗(yàn),得到以下數(shù)據(jù),對(duì)146只動(dòng)物服用藥物,其中101只動(dòng)物存活,45只動(dòng)物死亡;對(duì)照組144只動(dòng)物進(jìn)行常規(guī)治療,其中124只動(dòng)物存活,20只動(dòng)物死亡.

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)列聯(lián)表;

(2)試問(wèn)該種藥物對(duì)治療“H1N1”病毒是否有效?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x2+bx+c對(duì)于任意實(shí)數(shù)t都有f(2+t)=f(2﹣t),則f(1),f(2),f(4)的大小關(guān)系為(
A.f(1)<f(2)<f(4)
B.f(2)<f(1)<f(4)
C.f(4)<f(2)<f(1)
D.f(4)<f(1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合 計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合 計(jì)

70

30

100

⑴根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差

異”;

⑵已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)

抽取3人,求至多有1人喜歡甜品的概率.

0.100

0.050

0.010

2.706

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程選講.

在平面直角坐標(biāo)系中,曲線為參數(shù),實(shí)數(shù)),曲線

為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時(shí), ;當(dāng)時(shí), .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

)若函數(shù)有兩個(gè)極值點(diǎn),,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案