【題目】設x,y滿足約束條件 ,若目標函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達式為(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

【答案】C
【解析】解:作出x,y滿足約束條件 下的可行域,目標函數(shù)2z=2x+ny(n>0)可化為:y= + ,基準線y= , 由線性規(guī)劃知識,可得當直線z=x+ 過點B(1,1)時,z取得最大值,即1+ =2,解得n=2;
則y=tan(nx+ )的圖象向右平移 個單位后得到的解析式為y=tan[2(x﹣ )+ ]=tan(2x﹣ ).

故選:C.
畫出約束條件的可行域,利用z的最大值求出n,利用三角函數(shù)的圖象變換化簡求解即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點為拋物線 的焦點,點為拋物線上一定點。

1直線過點交拋物線、兩點,若,求直線的方程;

(2)過點作兩條傾斜角互補的直線分別交拋物線于異于點的兩點,試證明直線的斜率為定值,并求出該定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線與圓O: 且與橢圓C: 相交于A,B兩點

(1)若直線恰好經過橢圓的左頂點,求弦長AB;

(2)設直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(14分)關于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解關于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,是平面,是直線,給出下列命題:

,則

,,,則;

如果,是異面直線,則相交;

,且,則,且

其中正確確命題的序號是_____(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐S﹣ABC的各頂點都在一個半徑為r的球面上,且SA=SB=SC=1,AB=BC=AC=,則球的表面積為(  )

A. 12π B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且對任意正整數(shù),滿足.

(1)求數(shù)列的通項公式;

(2)若,數(shù)列的前項和為,是否存在正整數(shù),使? 若存在,求出符合條件的所有的值構成的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓, 是圓上任意一點,線段的垂直平分線和半徑相交于點

(Ⅰ)當點在圓上運動時,求點的軌跡方程;

(Ⅱ)直線與點的軌跡交于不同兩點,且(其中 O 為坐標

原點),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明: ;

2)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

同步練習冊答案