【題目】已知、、是平面上任意三點(diǎn),且,,.則的最小值是______.
【答案】-
【解析】
先假定a、b、c可形成△c/a+b +b/c,因c/a+b分子與b/c分母相同,故視c為定數(shù) c/a+b +b/c越小,應(yīng)是a+b越大,b越。a越大)
情況一:b越小時
設(shè)b→0,則a+b→c,故c/a+b +b/c→1
情況二:a越大時
設(shè)a→b+c
所以c/a+b +b/c="c/2b+c" +b/c=k(k>0)
則c^2+bc+2b^2=k(c^2+2bc)
(1-k)c^2+(1-2k)c/b+2=0
因為c/b為實數(shù),所以判別式≥0
即(1-k)^2-8(1-k)≥0
4k^2+4k-7≥0
解得k≥√2-1/2 或 k≤-√2-1/2
故k≥√2-1/2,即最小值=√2-1/2
此時c=b+c,c/b=2+2√2
a:b:c=(3+2√2):1:(2+2√2)
也就是說當(dāng)A B C共線時c/a+b +b/c有最小值=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個焦點(diǎn),且雙曲線過點(diǎn).
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線與雙曲線C交于A,B兩點(diǎn),試問:k為何值時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).若滿射,滿足:對任意的,,則稱為“和諧函數(shù)”.記 ,.設(shè)“和諧映射”為滿足條件:存在正整數(shù),使得(1)當(dāng)時,若,,則 ;(2)若 ,,則,求的最大可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于曲線:上原點(diǎn)之外的每一點(diǎn),求證存在過的直線與橢圓相交于兩點(diǎn)、,使與均為等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有5個匣子,每個匣子有一把鑰匙,并且鑰匙不能通用.如果隨意在每一個匣內(nèi)放入一把鑰匙,然后把匣子全都鎖上.現(xiàn)在允許砸開一個匣子,使得能相繼用鑰匙打開其余4個匣子,那么鑰匙的放法有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)
(1)求b的值,并求出函數(shù)的定義域
(2)若存在區(qū)間,使得時,的取值范圍為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,其中,是函數(shù)定義城內(nèi)任意不相等的兩個實數(shù).
(1)若,同時,求證:;
(2)判斷是否在集合A中,并說明理由;
(3)設(shè)函數(shù)的定義域為B,函數(shù)的值域為C.函數(shù)滿足以下3個條件:
①,②,③.試確定一個滿足以上3個條件的函數(shù)要對滿足的條件進(jìn)行說明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若對于x∈(0,+∞)都有成立,試求m的取值范圍;
(3)記g(x)=f(x)+x﹣n﹣3.當(dāng)m=1時,函數(shù)g(x)在區(qū)間[e﹣1,e]上有兩個零點(diǎn),求實數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是等邊三角形,D.E分別是BC.AC上兩點(diǎn),且,與AD交于點(diǎn)H,鏈接CH.
(1)當(dāng)時,求的值;
(2)如圖2,當(dāng)時,__________; __________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com