【題目】設(shè).若滿射,滿足:對(duì)任意的,則稱為“和諧函數(shù)”. ,.設(shè)“和諧映射”為滿足條件:存在正整數(shù),使得(1)當(dāng)時(shí),若, ;(2)若 ,,則,的最大可能值.

【答案】1008

【解析】

一方面,注意到2017為素?cái)?shù).

設(shè)為模2017的一個(gè)原則,則關(guān)于模2017的半階為1008.

.

因?yàn)?/span>,所以,遍歷模2017的完系.

于是,映射為滿射.

,即

故這樣定義的為“和諧映射”.

據(jù)的定義知.

此時(shí),由,得

.

注意到,關(guān)于模2017的半階為1008.

.

從而,所求的.

另一方面,作凸2017邊形,記作圖.

按如下規(guī)則連線:若, ,則連線段.

顯然,所連線段為圖的對(duì)角線,且所連的線段沒(méi)有重復(fù).否則,若存在兩條連線相同,即存在 ,及,使得 ,且 .

.

注意到,,這與題設(shè)條件矛盾.故所連對(duì)角線沒(méi)有重復(fù).

因?yàn)楣策B有條線段,而凸2017邊形共有2017×2017條線段,

所以,.

綜上,所求的最大值為1008.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=,其中a為常數(shù).

1)當(dāng)a1時(shí),求fx)的最大值;

2)若fx)在區(qū)間(0,e]上的最大值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在二項(xiàng)式的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值成等差數(shù)列。

(1)求展開(kāi)式的第四項(xiàng);

(2)求展開(kāi)式的常數(shù)項(xiàng);

(3)求展開(kāi)式中各項(xiàng)的系數(shù)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成 , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問(wèn)題:

(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(2)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);

(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正四棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為.

1)求證:平面平面;

2)求直線與平面所成的角的正弦值;

3)設(shè)為截面內(nèi)-點(diǎn)(不包括邊界),求到面,面,面的距離平方和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,左頂點(diǎn)到直線的距離為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點(diǎn),若以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),證明:到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是平面上任意三點(diǎn),且,.的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查患胃病是否與生活不規(guī)律有關(guān),在患胃病與生活不規(guī)律這兩個(gè)分類變量的計(jì)算中,下列說(shuō)法正確的是(

A. 越大,患胃病與生活不規(guī)律沒(méi)有關(guān)系的可信程度越大.

B. 越大,患胃病與生活不規(guī)律有關(guān)系的可信程度越小.

C.若計(jì)算得 ,經(jīng)查臨界值表知 ,則在 個(gè)生活不規(guī)律的人中必有 人患胃病.

D.從統(tǒng)計(jì)量中得知有 的把握認(rèn)為患胃病與生活不規(guī)律有關(guān),是指有 的可能性使得推斷出現(xiàn)錯(cuò)誤.

查看答案和解析>>

同步練習(xí)冊(cè)答案