【題目】設(shè).若滿射,滿足:對(duì)任意的,,則稱為“和諧函數(shù)”.記 ,.設(shè)“和諧映射”為滿足條件:存在正整數(shù),使得(1)當(dāng)時(shí),若,,則 ;(2)若 ,,則,求的最大可能值.
【答案】1008
【解析】
一方面,注意到2017為素?cái)?shù).
設(shè)為模2017的一個(gè)原則,則關(guān)于模2017的半階為1008.
令 .
因?yàn)?/span>,所以,遍歷模2017的完系.
于是,映射為滿射.
又,即
,
故這樣定義的為“和諧映射”.
據(jù)的定義知.
此時(shí),由,得
.
注意到,關(guān)于模2017的半階為1008.
故.
從而,所求的.
另一方面,作凸2017邊形,記作圖.
按如下規(guī)則連線:若, ,則連線段.
顯然,所連線段為圖的對(duì)角線,且所連的線段沒(méi)有重復(fù).否則,若存在兩條連線相同,即存在 ,及,使得 ,且或 .
則.
注意到,,這與題設(shè)條件矛盾.故所連對(duì)角線沒(méi)有重復(fù).
因?yàn)楣策B有條線段,而凸2017邊形共有2017×2017條線段,
所以,.
綜上,所求的最大值為1008.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,其中a為常數(shù).
(1)當(dāng)a=1時(shí),求f(x)的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為-2,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在二項(xiàng)式的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值成等差數(shù)列。
(1)求展開(kāi)式的第四項(xiàng);
(2)求展開(kāi)式的常數(shù)項(xiàng);
(3)求展開(kāi)式中各項(xiàng)的系數(shù)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬(wàn)噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問(wèn)題:
(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為.
(1)求證:平面平面;
(2)求直線與平面所成的角的正弦值;
(3)設(shè)為截面內(nèi)-點(diǎn)(不包括邊界),求到面,面,面的距離平方和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,左頂點(diǎn)到直線的距離,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),若以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),證明:到直線的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查患胃病是否與生活不規(guī)律有關(guān),在患胃病與生活不規(guī)律這兩個(gè)分類變量的計(jì)算中,下列說(shuō)法正確的是( )
A. 越大,“患胃病與生活不規(guī)律沒(méi)有關(guān)系”的可信程度越大.
B. 越大,“患胃病與生活不規(guī)律有關(guān)系”的可信程度越小.
C.若計(jì)算得 ,經(jīng)查臨界值表知 ,則在 個(gè)生活不規(guī)律的人中必有 人患胃病.
D.從統(tǒng)計(jì)量中得知有 的把握認(rèn)為患胃病與生活不規(guī)律有關(guān),是指有 的可能性使得推斷出現(xiàn)錯(cuò)誤.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com