14.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若a=2,c=2$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,且b>c,則b=4.

分析 利用同角三角函數(shù)基本關(guān)系式可求sinA,進(jìn)而利用正弦定理可求sinC,利用大邊對大角可得A,C為銳角,從而可求A,C,進(jìn)而可求B的值,利用勾股定理可求b的值.

解答 解:∵a=2,c=2$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{1}{2}$,在△ABC中,由正弦定理可得:sinC=$\frac{csinA}{a}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵b>c>a,可得:A=$\frac{π}{6}$,C=$\frac{π}{3}$,
∴B=π-A-C=$\frac{π}{2}$,
∴b=$\sqrt{{a}^{2}+{c}^{2}}$=$\sqrt{4+12}$=4.
故答案為:4.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理,大邊對大角,勾股定理等知識在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是正項等比數(shù)列,則下列數(shù)列不是等比數(shù)列的是(  )
A.$\{\sqrt{a_n}\}$B.$\{\frac{1}{a_n}\}$C.{an2}D.{an+1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)復(fù)數(shù)z=m2-2m-3+(m2+3m+2)i,試求實數(shù)m取何值時,
(1)z是實數(shù);
(2)z是純虛數(shù);
(3)z對應(yīng)的點位于復(fù)平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=sin2x+cosx在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上的最小值是( 。
A.$\frac{\sqrt{2}-1}{2}$B.-$\frac{\sqrt{2}+1}{2}$C.-1D.$\frac{1-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)D,E,F(xiàn)分別為△ABC的三邊BC,CA,AB的中點,則$\overrightarrow{EC}$+$\overrightarrow{BF}$=( 。
A.$\frac{1}{2}$$\overrightarrow{BE}$B.$\frac{1}{2}$$\overrightarrow{AD}$C.$\overrightarrow{ED}$D.$\overrightarrow{FE}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知sin(α+$\frac{π}{12}$)=$\frac{1}{3}$,則cos(α+$\frac{7π}{12}$)的值( 。
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若公差不為零的等差數(shù)列{an}中,a4=10且a3,a6,a10成等比數(shù)列.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前10項和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果cos(π-A)=-$\frac{1}{2}$,那么sin($\frac{π}{2}$+A)的值是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,-1),$\overrightarrow{m}$=$\overrightarrow{a}$+(2t2+3)$\overrightarrow$,$\overrightarrow{n}$=-k$\overrightarrow{a}$+$\frac{1}{t}$$\overrightarrow$,k,t為正實數(shù),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則k的最小值為2$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案