分析 (Ⅰ)由已知可得點(diǎn)C,D的坐標(biāo)分別為(0,-b),(0,b).結(jié)合$\overrightarrow{PC}$•$\overrightarrow{PD}$=-2列式求得b,則橢圓方程可求,進(jìn)一步求出c可得橢圓的離心率;
(Ⅱ)當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為y=kx+1,A,B的坐標(biāo)分別為(x1,y1),(x2,y2).聯(lián)立直線方程和橢圓方程,利用根與系數(shù)的關(guān)系可得A,B橫坐標(biāo)的和與積$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$,可知當(dāng)λ=2時(shí),$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=-7為定值.當(dāng)直線AB斜率不存在時(shí),直線AB即為直線CD,仍有$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{OC}$•$\overrightarrow{OD}$+2$\overrightarrow{PC}$•$\overrightarrow{PD}$=-3-4=-7,故存在常數(shù)λ=2,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值-7.
解答 解:(Ⅰ)由已知,點(diǎn)C,D的坐標(biāo)分別為(0,-b),(0,b).
又點(diǎn)P的坐標(biāo)為(0,1),且$\overrightarrow{PC}$•$\overrightarrow{PD}$=-2,即1-b2=-2,
解得b2=3.
∴橢圓E方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
∵c=$\sqrt{{a}^{2}-^{2}}$=1,∴離心率e=$\frac{1}{2}$;
(Ⅱ)當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為y=kx+1,A,B的坐標(biāo)分別為(x1,y1),(x2,y2).
聯(lián)立$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=kx+1\end{array}\right.$,得(4k2+3)x2+8kx-8=0.
其判別式△>0,
x1+x2=$\frac{-8k}{{4{k^2}+3}}$,x1x2=$\frac{-8}{{4{k^2}+3}}$.
從而,$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=x1x2+y1y2+λ[x1x2+(y1-1)(y2-1)]
=(1+λ)(1+k2)x1x2+k(x1+x2)+1
=$\frac{{-8({1+λ})({1+{k^2}})-4{k^2}+3}}{{4{k^2}+3}}$=$\frac{4-2λ}{{4{k^2}+3}}$-2λ-3,
當(dāng)λ=2時(shí),$\frac{4-2λ}{{4{k^2}+3}}$-2λ-3=-7,
即$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=-7為定值.
當(dāng)直線AB斜率不存在時(shí),直線AB即為直線CD,
此時(shí)$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{OC}$•$\overrightarrow{OD}$+2$\overrightarrow{PC}$•$\overrightarrow{PD}$=-3-4=-7,
故存在常數(shù)λ=2,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值-7.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了平面向量在求解圓錐曲線問(wèn)題中的應(yīng)用,體現(xiàn)了“設(shè)而不求”的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ¬p:?x∈[0,2π],sinx≥1 | B. | ¬p:?x∈[-2π,0],sinx>1 | ||
C. | ¬p:?x∈[0,2π],sinx>1 | D. | ¬p:?x∈[-2π,0],sinx>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}-1}}{2}$ | B. | $\sqrt{3}-1$ | C. | $\frac{{\sqrt{3}-\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | nxn-1e-x | B. | xne-x | C. | 2xne-x | D. | (n-x)xn-1e-x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com