分析 (I)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得:直線l的普通方程.圓C的極坐標方程為ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得圓C的直角坐標方程.
(Ⅱ) 由平面幾何知識知:最小值為圓心C到l的距離減半徑,利用點到直線的距離公式可得圓心C到l的距離d.
解答 解:(I)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得:直線l的普通方程為x-y+1=0.
圓C的極坐標方程為ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得圓C的直角坐標方程:(x-1)2+y2=1.
(Ⅱ) 由平面幾何知識知:最小值為圓心C到l的距離減半徑,∵圓心到直線的距離$d=\frac{{|{1+1}|}}{{\sqrt{2}}}=\sqrt{2}$.
∴|PQ|的最小值為$\sqrt{2}-1$.
點評 本題考查了參數(shù)方程化為普通方程、極坐標化為直角坐標方程、直線與圓的位置關系、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-4,2) | B. | (-2,4) | C. | (2,+∞) | D. | (-∞,-4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費x(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量y(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
$\sum_{i=1}^{6}$(lnxi•lnyi) | $\sum_{i=1}^{6}$(lnxi) | $\sum_{i=1}^{6}$(lnyi) | $\sum_{i=1}^{6}$(lnxi)2 |
75.3 | 24.6 | 18.3 | 101.4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com