12.已知z=(m+4)+(m-2)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限,則實(shí)數(shù)m的取值范圍是( 。
A.(-4,2)B.(-2,4)C.(2,+∞)D.(-∞,-4)

分析 z=(m+4)+(m-2)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限,可得$\left\{\begin{array}{l}{m+4<0}\\{m-2<0}\end{array}\right.$,解出即可得出.

解答 解:z=(m+4)+(m-2)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限,∴$\left\{\begin{array}{l}{m+4<0}\\{m-2<0}\end{array}\right.$,
解得:m<-4
則實(shí)數(shù)m的取值范圍是(-∞,-4).
故:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“?x∈R,x2-x+1>0”的否定是( 。
A.?x∈R,x2-x+1≤0B.?x∈R,x2-x+1<0
C.?x0∈R,x02-x0+1≤0D.?x0∈R,x02-x0+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知?jiǎng)訂TP過定點(diǎn)$M(-\sqrt{3},0)$且與圓N:${(x-\sqrt{3})^2}+{y^2}=16$相切,記動(dòng)圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)D(3,0)且斜率不為零的直線交曲線C于A,B兩點(diǎn),在x軸上是否存在定點(diǎn)Q,使得直線AQ,BQ的斜率之積為非零常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos(2x-φ)-$\sqrt{3}$sin(2x-φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$個(gè)單位后關(guān)于y軸對(duì)稱,則f(x)在區(qū)間$[{-\frac{π}{2},0}]$上的最小值為(  )
A.-1B.$\sqrt{3}$C.$-\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)求直線l的普通方程與圓C的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P、Q分別在直線l和圓C上運(yùn)動(dòng),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AB=BC=2,∠ACB=30°,∠C1CB=120°,BC1⊥A1C,E為AC的中點(diǎn).
(1)求證:A1C⊥平面C1EB;
(2)求二面角A1-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若x>0,y>0,x+y=1,則$\frac{x^2}{x+2}+\frac{y^2}{y+1}$的最小值為( 。
A.$\frac{1}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對(duì)任意的正數(shù)x、y都有f(x•y)=f(x)+f(y),若數(shù)列{an}的前n項(xiàng)和為Sn,且f(an)=f(Sn+2)-f(4)(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=$\frac{1}{2}$×($\frac{4}{3}$)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合A={x|x2-2x<0},B={x||x|<2},則( 。
A.A∩B=∅B.A∩B=AC.A∪B=AD.A∪B=R

查看答案和解析>>

同步練習(xí)冊(cè)答案