3.若函數(shù)f(x)是以π為周期的奇函數(shù),且當$x∈[{-\frac{π}{2}\;,\;0})$時,f(x)=cosx,則$f({-\frac{5π}{3}})$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由題意,$f({-\frac{5π}{3}})$=f($\frac{π}{3}$)=-f(-$\frac{π}{3}$)=-cos(-$\frac{π}{3}$),即可得出結(jié)論.

解答 解:由題意,$f({-\frac{5π}{3}})$=f($\frac{π}{3}$)=-f(-$\frac{π}{3}$)=-cos(-$\frac{π}{3}$)=-$\frac{1}{2}$,
故選:A.

點評 本題考查了三角函數(shù)的周期性及奇偶性的運用,屬于基礎題型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知F為雙曲線$\frac{x^2}{3a}-\frac{y^2}{a}=1({a>0})$的一個焦點,則點F到C的一條漸近線的距離為( 。
A.$\sqrt{a}$B.aC.$\sqrt{3}a$D.3a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知點P(4,-3)是角α終邊上一點,則下列三角函數(shù)值中正確的是( 。
A.tanα=-$\frac{4}{3}$B.tanα=-$\frac{3}{4}$C.sinα=-$\frac{4}{5}$D.cosα=$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若函數(shù)y=$\frac{1}{2}$cosx(0≤x≤π)的圖象和直線y=2、直線x=π、y軸圍成一個封閉的平面圖形,則這個封閉圖形的面積是2π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.甲、乙兩人玩剪刀、錘子、布的游戲,則玩一局甲不輸?shù)母怕适?\frac{2}{3}$.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)y=sin(ωx+φ)(ω>0,-π<φ≤π)的圖象如圖所示,則φ=$\frac{9}{10}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax+lnx,a∈R.
(1)求函數(shù)f(x)的極值;
(2)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),且x1<x0<x2使得曲線在點Q處的切線l∥P1P2,則稱l為弦P1P2的伴隨直線,特別地,當x0=λx1+(1-λ)x2(0<λ<1)時,又稱l為P1P2的λ-伴隨直線.
①求證:曲線y=f(x)的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線C,使得曲線C的任意一條弦均有$\frac{1}{2}$-伴隨直線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知:f(x)=x2+2f′(1)x,若f(x)>0,則x的取值范圍(-∞,0)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知點M,N是拋物線y=4x2上不同的兩點,F(xiàn)為拋物線的焦點,且滿足∠MFN=135°,弦MN的中點P到直線l:y=-$\frac{1}{16}$的距離記為d,|MN|2=λ•d2,則λ的最小值為2+$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案