【題目】數(shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列;有如下運(yùn)算結(jié)論:①;②數(shù)列是等比數(shù)列;③數(shù)列的前項(xiàng)和為;④若存在正整數(shù),使得,則

其中正確的結(jié)論是________(將你認(rèn)為正確的結(jié)論序號都填上)

【答案】①③④.

【解析】分析:根據(jù)題中所給的條件,將數(shù)列的項(xiàng)逐個(gè)寫出,可以求得將數(shù)列的各項(xiàng)求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結(jié)果,結(jié)合條件,去挖掘條件,最后得到正確的結(jié)果.

詳解:對于①,前24項(xiàng)構(gòu)成的數(shù)列是所以,故①正確;

對于②,數(shù)列,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;

對于③,由上邊結(jié)論可知是以為首項(xiàng),以為公比的等比數(shù)列,所以有,故③正確;

對于④,由③知,解得,,故④正確;

故答案是①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作圓 的切線, 為坐標(biāo)原點(diǎn),切點(diǎn)為,且.

(1)求的值;

(2)設(shè)是圓上位于第一象限內(nèi)的任意一點(diǎn),過點(diǎn)作圓的切線,且軸于點(diǎn),交y軸于點(diǎn),設(shè),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校從參加高一年級期中考試的學(xué)生中抽出名學(xué)生,并統(tǒng)計(jì)了她們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為分),數(shù)學(xué)成績分組及各組頻數(shù)如下:

樣本頻率分布表:

分組

頻數(shù)

頻率

合計(jì)

(1)在給出的樣本頻率分布表中,求的值;

(2)估計(jì)成績在分以上(含分)學(xué)生的比例;

(3)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在的學(xué)生中選兩位同學(xué),共同幫助成績在中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?/span>分,乙同學(xué)的成績?yōu)?/span>分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)求函數(shù)的極值;

(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.

【答案】(1);(2)當(dāng)時(shí), 恒成立, 不存在極值.當(dāng)時(shí),

有極小值無極大值.(3)

【解析】試題分析:

(1)當(dāng)時(shí),求得,得到的值,即可求解切線方程.

(2)由定義域?yàn)?/span>,求得,分時(shí)分類討論得出函數(shù)的單調(diào)區(qū)間,即可求解函數(shù)的極值.

(3)根據(jù)題意上遞增,得恒成立,進(jìn)而求解實(shí)數(shù)的取值范圍.

試題解析:

(1)當(dāng)時(shí), , ,

,又,∴切線方程為.

(2)定義域?yàn)?/span>, ,當(dāng)時(shí), 恒成立, 不存在極值.

當(dāng)時(shí),令,得,當(dāng)時(shí), ;當(dāng)時(shí), ,

所以當(dāng)時(shí), 有極小值無極大值.

(3)∵上遞增,∴恒成立,即恒成立,∴

點(diǎn)睛:導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點(diǎn),所以在歷屆高考中,對導(dǎo)數(shù)的應(yīng)用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來看,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行: (1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù)(3)考查數(shù)形結(jié)合思想的應(yīng)用

型】解答
結(jié)束】
22

【題目】已知圓 和點(diǎn), 是圓上任意一點(diǎn),線段的垂直平分線和相交于點(diǎn), 的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn)是曲線軸正半軸的交點(diǎn),直線、兩點(diǎn),直線, 的斜率分別是, ,若,求:①的值;②面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)滿足:當(dāng)時(shí),,,當(dāng)時(shí),

)求當(dāng)時(shí),的表達(dá)式.

)若直線與函數(shù)的圖象恰好有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

)試討論當(dāng)實(shí)數(shù),滿足什么條件時(shí),函數(shù)個(gè)零點(diǎn)且這個(gè)零點(diǎn)從小到大依次成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)求C1 , C2的極坐標(biāo)方程;
(2)射線 與C1的異于原點(diǎn)的交點(diǎn)為A,與C2的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱長為2的正方體ABCD-A1B1C1D1中,E、F分別是DD1、DB的中點(diǎn),求證:

1EF∥平面ABC1D1

2EF⊥B1C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟(jì)收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2018年種植的一批試驗(yàn)紫甘薯在不同溫度時(shí)6組死亡的株數(shù):

溫度(單位:℃)

21

23

24

27

29

32

死亡數(shù)(單位:株)

6

11

20

27

57

77

經(jīng)計(jì)算:,,,.

其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù),

(1)是否有較強(qiáng)的線性相關(guān)性? 請計(jì)算相關(guān)系數(shù)(精確到)說明.

(2)并求關(guān)于的回歸方程(都精確到);

(3)用(2)中的線性回歸模型預(yù)測溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對于一組數(shù)據(jù),,……,,

線性相關(guān)系數(shù),通常情況下當(dāng)大于0.8時(shí),認(rèn)為兩

個(gè)變量有很強(qiáng)的線性相關(guān)性

其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在桂林市某中學(xué)高中數(shù)學(xué)聯(lián)賽前的模擬測試中,得到甲、乙兩名學(xué)生的6次模擬測試成績(百分制)的莖葉圖.分?jǐn)?shù)在85分或85分以上的記為優(yōu)秀.

(1)根據(jù)莖葉圖讀取出乙學(xué)生6次成績的眾數(shù),并求出乙學(xué)生的平均成績以及成績的中位數(shù);

(2)若在甲學(xué)生的6次模擬測試成績中去掉成績最低的一次,在剩下5次中隨機(jī)選擇2次成績作為研究對象,求在選出的成績中至少有一次成績記為優(yōu)秀的概率.

查看答案和解析>>

同步練習(xí)冊答案