【題目】已知偶函數(shù)滿足:當時,,,當時,.
()求當時,的表達式.
()若直線與函數(shù)的圖象恰好有兩個公共點,求實數(shù)的取值范圍.
()試討論當實數(shù),滿足什么條件時,函數(shù)有個零點且這個零點從小到大依次成等差數(shù)列.
【答案】(1).
(2)
(3) 時,.時,.時,符合題意.
【解析】分析:()由題意結(jié)合偶函數(shù)的性質(zhì)可得當時,的表達式為.
()由題意分類討論可得實數(shù)的取值范圍是.
()由題意結(jié)合二次函數(shù)的性質(zhì)分類討論可得時,.時,.時,.
詳解:()設(shè),則,
∴,
又∵是偶函數(shù),
∴.
()(Ⅰ)時,,,
,
∴,
∴,
∴.
(Ⅱ)時,滿足題意.
綜上,所以.
()零點,,,,與交點個且均勻分布,
(Ⅰ)時得:
,,,,,.
(Ⅱ)時,時,
且,
所以時,.
(Ⅲ)時,時,
(Ⅳ)時,
,
,
此時.
所以(舍),
,所以時,
時存在.
綜上:
()時,.
()時,.
()時,符合題意.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC.
(1)求證:a,b,c成等比數(shù)列;
(2)若b=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年一交警統(tǒng)計了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速 | |||||
事故次數(shù) |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預測2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達到時,可能發(fā)生的交通事故次數(shù).
(參考數(shù)據(jù):)
[參考公式:]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:
先由命題解得;命題得,
(1)當,得命題,再由為真,得真且真,即可求解的取值范圍.
(2)由是的充分不必要條件,則是的充分必要條件,根據(jù)則 ,即可求解實數(shù)的取值范圍.
試題解析:
命題:由題得,又,解得;
命題: ,解得.
(1)若,命題為真時, ,
當為真,則真且真,
∴解得的取值范圍是.
(2)是的充分不必要條件,則是的充分必要條件,
設(shè), ,則 ;
∴∴實數(shù)的取值范圍是.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點、,且中點橫坐標為2,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列;有如下運算結(jié)論:①;②數(shù)列是等比數(shù)列;③數(shù)列的前項和為;④若存在正整數(shù),使得,則,
其中正確的結(jié)論是________(將你認為正確的結(jié)論序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù).
(1)求函數(shù)的最大值;
(2)對于任意,且,是否存在實數(shù),使恒
成立,若存在求出的范圍,若不存在,說明理由;
(3)若正項數(shù)列滿足,且數(shù)列的前項和為,試判斷與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com