【題目】已知橢圓C b0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OMON的斜率之積等于,試探求△OMN的面積是否為定值,并說明理由.

【答案】;(見解析.

【解析】試題分析:)先利用四邊形的面積求得,再利用直線和圓相切進行求解;()設(shè)出直線方程,聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系、直線的斜率公式和三角形的面積公式進行求解.

試題解析:(Ⅰ)∵四邊形A1B1A2B2的面積為4,又可知四邊形A1B1A2B2為菱形,

,即ab=2①

由題意可得直線A2B2方程為:,即bx+ay﹣ab=0,

∵四邊形A1B1A2B2內(nèi)切圓方程為

∴圓心O到直線A2B2的距離為,即

由①②解得:a=2,b=1,∴橢圓C的方程為:

(Ⅱ)若直線MN的斜率存在,設(shè)直線MN的方程為y=kx+m,M(x1,y1),N(x2,y2),

得:(1+4k2)x2+8mkx+4(m2﹣1)=0∵直線l與橢圓C相交于M,N兩個不同的點,

∴△=64m2k2﹣16(1+4k2)(m2﹣1)>0得:1+4k2﹣m2>0③

由韋達定理:

∵直線OM,ON的斜率之積等于,

,

∴2m2=4k2+1滿足③…(9分)

,

O到直線MN的距離為,

所以△OMN的面積

若直線MN的斜率不存在,M,N關(guān)于x軸對稱

設(shè)M(x1,y1),N(x1,﹣y1),則,

又∵M在橢圓上,,∴,

所以△OMN的面積S===1.

綜上可知,△OMN的面積為定值1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)滿足:當時,,,當時,

)求當時,的表達式.

)若直線與函數(shù)的圖象恰好有兩個公共點,求實數(shù)的取值范圍.

)試討論當實數(shù)滿足什么條件時,函數(shù)個零點且這個零點從小到大依次成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)如圖所示,已知以點為圓心的圓與直線相切.過點的動直線與圓相交于,兩點,的中點,直線相交于點.

1)求圓的方程;

2)當時,求直線的方程.

3是否為定值?如果是,求出其定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,,,點的內(nèi)心,記,,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn,且=9,S6=60

(I)求數(shù)列{an}的通項公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在桂林市某中學(xué)高中數(shù)學(xué)聯(lián)賽前的模擬測試中,得到甲、乙兩名學(xué)生的6次模擬測試成績(百分制)的莖葉圖.分數(shù)在85分或85分以上的記為優(yōu)秀.

(1)根據(jù)莖葉圖讀取出乙學(xué)生6次成績的眾數(shù),并求出乙學(xué)生的平均成績以及成績的中位數(shù);

(2)若在甲學(xué)生的6次模擬測試成績中去掉成績最低的一次,在剩下5次中隨機選擇2次成績作為研究對象,求在選出的成績中至少有一次成績記為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集具有性質(zhì)對任意的,使得成立.

(1)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

(2)求證: ;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是__________.

①每條直線都有唯一一個傾斜角與之對應(yīng),也有唯一一個斜率與之對應(yīng);

②傾斜角的范圍是:,且當傾斜角增大時,斜率不一定增大;

③直線過點,且橫截距與縱截距相等,則直線的方程一定為;

④過點,且斜率為1的直線的方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果一個幾何體的主視圖與左視圖是全等的長方形,邊長分別是,如圖所示,俯視圖是一個邊長為的正方形.

(1)求該幾何體的表面積;

(2)求該幾何體的外接球的體積.

查看答案和解析>>

同步練習(xí)冊答案