等比數(shù)列{an}中,a1>1,前n項(xiàng)和為Sn,若
lim
n→∞
Sn=
1
a1
,那么a1的取值范圍
 
考點(diǎn):數(shù)列的極限
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等比數(shù)列{an}的公比為q,依題意,|q|<1且q≠0,依題意,可求得
a1
1-q
=
1
a1
,利用其公比|q|<1且q≠0及已知a1>1,即可求得a1的取值范圍.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,依題意,|q|<1且q≠0,
因?yàn)槠淝皀項(xiàng)和Sn=
a1(1-qn)
1-q
,
所以,
lim
n→∞
Sn=
lim
n→∞
a1(1-qn)
1-q
=
a1
1-q
,又
lim
n→∞
Sn=
1
a1

所以,
a1
1-q
=
1
a1
,
所以,q=1-a12,由|q|=|1-a12|<1得:0<a12<2,且a1≠±1,又a1>1,
那么a1的取值范圍為(1,
2
).
故答案為:(1,
2
).
點(diǎn)評(píng):本題考查無(wú)窮遞縮等比數(shù)列的極限,利用其公比|q|<1且q≠0作為解題的突破口是關(guān)鍵,考查等比數(shù)列的求和公式解不等式的能力,考查轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列語(yǔ)句是命題的是( 。
A、指數(shù)函數(shù)是增函數(shù)嗎
B、若整數(shù)a是素?cái)?shù),則a是奇數(shù)
C、求證
2
是無(wú)理數(shù)
D、x>15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2,2),C(5,6).若在以點(diǎn)C為圓心,r為半徑的圓上存在不同的兩點(diǎn)A,B.使得向量
PA
-2
PB
=
0
,則r的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2-(a+1)x(a≥1).
(1)討論f(x)的單調(diào)性與極值點(diǎn);
(2)若g(x)=
1
2
x2-x-1(x>1),證明:當(dāng)a=1時(shí),g(x)的圖象恒在f(x)的圖象上方;
(3)證明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,四邊形OPQR的頂點(diǎn)按逆時(shí)針順序依次為O(0,0)、P(1,t)、Q(1-2t,2+t)、R(-2t,2),其中t∈(0,+∞),試判斷四邊形OPQR的形狀,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某水泥廠甲、乙兩個(gè)車間包裝水泥,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99
乙:110,115,90,85,75,115,110
(Ⅰ)畫(huà)出這兩組數(shù)據(jù)的莖葉圖;
(Ⅱ)求出這兩組數(shù)據(jù)的平均值和方差(用分?jǐn)?shù)表示);并說(shuō)明哪個(gè)車間的產(chǎn)品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定函數(shù)f(x)和常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“好數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類好數(shù)對(duì)”.已知函數(shù)f(x)的定義域?yàn)閇1,+∞).
(Ⅰ)若(1,1)是函數(shù)f(x)的一個(gè)“好數(shù)對(duì)”,且f(1)=3,求f(16);
(Ⅱ)若(2,0)是函數(shù)f(x)的一個(gè)“好數(shù)對(duì)”,且當(dāng)1<x≤2時(shí),f(x)=
2x-x2
,求證:函數(shù)y=f(x)-x在區(qū)間(1,+∞)上無(wú)零點(diǎn);
(Ⅲ)若(2,-2)是函數(shù)f(x)的一個(gè)“類好數(shù)對(duì)”,f(1)=3,且函數(shù)f(x)單調(diào)遞增,比較f(x)與
x
2
+2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2cos(ωx+φ)對(duì)任意的x∈R,都有f(
π
3
+x
)=f(
π
3
-x
),若設(shè)函數(shù)g(x)=3sin(ωx+φ)-1,則g(
π
3
)的值時(shí)( 。
A、2
B、-4或2
C、
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(m,
1-m
2
),
b
=(-2,-2),那么向量
a
-
b
的模取最小值時(shí),實(shí)數(shù)m的取值與最小值分別是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案