精英家教網 > 高中數學 > 題目詳情
如果(x,y)在映射f作用下的象是(x+y,x-y),則(1,2)的象是( 。
A、(-1,3)
B、(-3,-1)
C、(3,-1)
D、(
3
2
,-
1
2
)
考點:映射
專題:函數的性質及應用
分析:由對應關系可知,點(1,2)的橫縱坐標和為像的橫坐標,橫縱坐標和為像的縱坐標.
解答: 解:由對應關系f可知,(′1,2)在f作用下的象是(1+2,1-2),即(3,-1).
故選:C.
點評:本題考查了映射的概念,是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

a
b
,
c
均為單位向量,且
a
b
=0,(
a
+
b
)•
c
c
2
,則|
a
+
b
+
c
|的最小值為( 。
A、
2
-1
B、1
C、
2
+1
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓臺的上下底面半徑分別為1和2,高為1,則該圓臺的全面積為( 。
A、3
2
π
B、(5+3
2
)π
C、
5+3
2
3
π
D、
5+
2
2
π

查看答案和解析>>

科目:高中數學 來源: 題型:

直線x-y=0被圓x2+y2=1截得的弦長為( 。
A、2B、1C、4D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

設x=lnπ,y=log
5
2
,z=e-
1
2
,則(  )
A、y<z<x
B、z<x<y
C、z<y<x
D、x<y<z

查看答案和解析>>

科目:高中數學 來源: 題型:

在Rt△ABC中,∠BAC=90°,A(0,2
2
),B(0,-2
2
),S△ABC=
2
2
3
,動點P的軌跡為曲線E,曲線E過點C且滿足|PA|+|PB|為常數.
(1)求曲線E的方程;
(2)是否存在直線L,使L與曲線E交于不同的兩點M、N,且線段MN恰被直線x=-
1
2
平分?若存在,求出L的斜率的取值范圍;若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩個變量x,y具有線性相關關系,并測得(x,y)的四組值分別是(2,3)、(5,7)、(8,9)、(11,13),則求得的線性回歸方程所確定的直線必定經過點( 。
A、(2,3)
B、(8,9)
C、(6,9)
D、(6.5,8)

查看答案和解析>>

科目:高中數學 來源: 題型:

設0<b<1,則log2015b+logb2015的取值范圍是(  )
A、[2,+∞)
B、(2,+∞)
C、(-∞,2]
D、(-∞,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

執(zhí)行如圖的程序框圖,若輸出的k=2,則輸入的x的取值范圍是
 

查看答案和解析>>

同步練習冊答案