【題目】對有個元素的總體進(jìn)行抽樣,先將總體分成兩個子總體和(是給定的正整數(shù),且),再從每個子總體中各隨機(jī)抽取2個元素組成樣本.用表示元素和同時出現(xiàn)在樣本中的概率.
(1)求的表達(dá)式(用,表示);
(2)求所有的和.
【答案】(1) ;(2)6
【解析】
(1)根據(jù)組合數(shù)的公式,以及古典概型的概率計算公式和相互獨立事件的概率計算公式,即可求解;
(2)當(dāng)都在中時求得的和為1,當(dāng)同時在中時,求得的和為1,當(dāng)在中,在中時得到的和為4,即可求解.
(1)由題意,從和個式子中隨機(jī)抽取2個,分別有和個基本事件,
所以的表達(dá)式為.
(2)當(dāng)都在中時,可得,
而從中選兩個數(shù)的不同方法數(shù)為,則的和為1;
當(dāng)同時在中時,同理可得的和為1;
當(dāng)在中,在中時,,
而從中選取一個數(shù),從中選一個數(shù)的不同方法數(shù)為,
則的和為4,所以所有的和為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】檢驗中心為篩查某種疾病,需要檢驗血液是否為陽性,對份血液樣本,有以下兩種檢驗方式:①逐份檢驗,需要檢驗次;②混合檢驗,即將其中(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,再對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為點.當(dāng)時,根據(jù)和的期望值大小,討論當(dāng)取何值時,采用逐份檢驗方式好?
(參考數(shù)據(jù):,,,,,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著運動app和手環(huán)的普及和應(yīng)用,在朋友圈、運動圈中出現(xiàn)了每天1萬步的健身打卡現(xiàn)象,“日行一萬步,健康一輩子”的觀念廣泛流傳.“健步達(dá)人”小王某天統(tǒng)計了他朋友圈中所有好友(共500人)的走路步數(shù),并整理成下表:
分組(單位:千步) | ||||||||
頻數(shù) | 60 | 240 | 100 | 60 | 20 | 18 | 0 | 2 |
(1)請估算這一天小王朋友圈中好友走路步數(shù)的平均數(shù)(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點值作代表);
(2)若用表示事件“走路步數(shù)低于平均步數(shù)”,試估計事件發(fā)生的概率;
(3)若稱每天走路不少于8千步的人為“健步達(dá)人”,小王朋友圈中歲數(shù)在40歲以上的中老年人共有300人,其中健步達(dá)人恰有150人,請?zhí)顚懴旅?/span>列聯(lián)表.根據(jù)列聯(lián)表判斷,有多大把握認(rèn)為,健步達(dá)人與年齡有關(guān)?
健步達(dá)人 | 非健步達(dá)人 | 合計 | |
40歲以上 | |||
不超過40歲 | |||
合計 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為拋物線上不同的兩點,且,點且于點.
(1)求的值;
(2)過軸上一點 的直線交于,兩點,在的準(zhǔn)線上的射影分別為,為的焦點,若,求中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,橢圓C的上、下頂點分別為A1,A2,左、右頂點分別為B1,B2,左、右焦點分別為F1,F2.原點到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)P是橢圓上異于A1,A2的任一點,直線PA1,PA2,分別交x軸于點N,M,若直線OT與以MN為直徑的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an=(n∈N*,n≥2),數(shù)列{bn}滿足關(guān)系式bn=(n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的零點個數(shù);
(2)若,使得,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系xOy中,橢圓(a>b>0)的短軸長為,離心率為.
(1)求橢圓的方程;
(2)斜率為1且經(jīng)過橢圓的右焦點的直線交橢圓于P1、P2兩點,P是橢圓上任意一點,若(λ,μ∈R),證明:λ2+μ2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省即將實行新高考,不再實行文理分科.某校為了研究數(shù)學(xué)成績優(yōu)秀是否對選擇物理有影響,對該校2018級的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:
(1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;
選物理 | 不選物理 | 總計 | |
數(shù)學(xué)成績優(yōu)秀 | |||
數(shù)學(xué)成績不優(yōu)秀 | 260 | ||
總計 | 600 | 1000 |
(2)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為數(shù)學(xué)成績優(yōu)秀與選物理有關(guān)?
附:
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com