【題目】已知橢圓的離心率,橢圓C的上、下頂點分別為A1,A2,左、右頂點分別為B1,B2,左、右焦點分別為F1,F2.原點到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)P是橢圓上異于A1,A2的任一點,直線PA1,PA2,分別交x軸于點N,M,若直線OT與以MN為直徑的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值.
【答案】(1)y2=1(2)證明見解析;定值2
【解析】
(1)設a=2m,cm,則b=m.直線A2B2方程為mx﹣2my﹣2m2=0.由點到直線距離公式能求出m=1.由此能求出橢圓方程.
(2)由A1(0,1)A2(0,﹣1),設P(x0,y0),分別求出直線PA1和直線PA2,設圓G的圓心為,利用圓的性質(zhì)能證明線段OT的長度為定值2;
(1)因為橢圓C的離心率e,故設a=2m,cm,則b=m.
直線A2B2方程為bx﹣ay﹣ab=0,即mx﹣2my﹣2m2=0.
所以,解得m=1.
所以a=2,b=1,橢圓方程為y2=1;
(2)由(1)可知A1(0,1)A2(0,﹣1),設P(x0,y0),
直線PA1:y﹣1x,令y=0,得xN,
直線PA2:y+1x,令y=0,得xM,
設圓G的圓心為,
則.
OG2.
OT2=OG2﹣r2.
而y02=1,所以x02=4(1﹣y02),所以OT2=4,
所以OT=2,即線段OT的長度為定值2.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有極值,且導函數(shù)的極值點是的零點.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時期數(shù)學家劉徽在其《九章算術(shù)注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為和的矩形分成兩個直角三角形,每個直角三角形再分成一個內(nèi)接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設為斜邊的中點,作直角三角形的內(nèi)接正方形對角線,過點作于點,則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=BC=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)證明:BC⊥平面ACFE;
(2)設點M在線段EF上運動,平面MAB與平面FCB所成銳二面角為θ,求cosθ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,是的導函數(shù).
(1)若,求在處的切線方程;
(2)若在可上單調(diào)遞增,求的取值范圍;
(3)求證:當時在區(qū)間內(nèi)存在唯一極大值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對有個元素的總體進行抽樣,先將總體分成兩個子總體和(是給定的正整數(shù),且),再從每個子總體中各隨機抽取2個元素組成樣本.用表示元素和同時出現(xiàn)在樣本中的概率.
(1)求的表達式(用,表示);
(2)求所有的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,.
(1)當時,求函數(shù)圖象在處的切線方程;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),,為曲線上的一動點.
(I)求動點對應的參數(shù)從變動到時,線段所掃過的圖形面積;
(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是上的偶函數(shù),且,若在上單調(diào)遞減,則函數(shù)在上是( )
A. 增函數(shù) B. 減函數(shù) C. 先增后減的函數(shù) D. 先減后增的函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com