10.設(shè)函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,函數(shù)$g(x)=\sqrt{\frac{3}{x}-1}$的定義域?yàn)榧螧.已知α:x∈A∩B,β:x滿足2x+p≤0,且α是β的充分條件,求實(shí)數(shù)p的取值范圍.

分析 根據(jù)函數(shù)成立的條件求出函數(shù)的定義域,利用充分條件和必要條件的定義建立集合關(guān)系進(jìn)行求解即可.

解答 解:由x2-x-2>0得x>2或x<-1,即函數(shù)的定義域A=(-∞,-1)∪(2,+∞),
由$\frac{3}{x}$-1≥0,得$\frac{3}{x}$≥1,
得0<x≤3,即B(0,3],則A∩B=(2,3],
由2x+p≤0得x≤-$\frac{p}{2}$,設(shè)C=(-∞,-$\frac{p}{2}$],
若α是β的充分條件,則A∩B⊆C,
即3≤-$\frac{p}{2}$,得p≤-6,
即實(shí)數(shù)p的取值范圍是(-∞,-6].

點(diǎn)評 本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)函數(shù)成立的條件求出兩個(gè)函數(shù)的定義域是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}的第1項(xiàng)為a1=1,且an+1=$\frac{{a}_{n}}{1+2{a}_{n}}$(n=1,2,3,4,…),通過計(jì)算a1,a2,a3,a4,猜想這個(gè)數(shù)列的通項(xiàng)公式為an=$\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列四組函數(shù)中表示同一函數(shù)的是( 。
A.f(x)=x,g(x)=($\sqrt{x}$)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=0,g(x)=$\sqrt{x-1}+\sqrt{1-x}$D.f(x)=$\sqrt{{x}^{2}}$,g(x)=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若命題“p∨q”為真,且“¬p”為真,則( 。
A.p或q為假B.q假C.q真D.不能判斷q的真假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若二次函數(shù)y=-x2+2x+2,當(dāng)x∈[a,3]時(shí),y∈[-1,3],則實(shí)數(shù)a的取值范圍為( 。
A.[-1,3]B.[-1,1]C.(-1,1)D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對具有線性相關(guān)的變量x,y有一組觀測數(shù)據(jù)(xi,yi)(i=1,2,…6),其回歸直線方程是$\widehaty=\frac{1}{4}x+a$,且x1+x2+…+x6=10,y1+y2+…+y6=4,則實(shí)數(shù)a的值是( 。
A.$\frac{2}{3}$3B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)$f(x)=\frac{1}{|x|-2}-m$只有一個(gè)零點(diǎn),則實(shí)數(shù)m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x,y∈R*,且2x+3y=4,則xy的最大值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.α、β是兩個(gè)不同的平面,m、n是平面α及β之外的兩條不同直線.給出四個(gè)論斷:①m⊥β;②α⊥β;③m⊥n;④n⊥α.以其中三個(gè)論斷作為條件,余下一個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的一個(gè)命題為若①②④則③或若①③④則②.

查看答案和解析>>

同步練習(xí)冊答案