有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,是因?yàn)椋ā 。?/div>
A、大前提錯(cuò)誤 |
B、小前提錯(cuò)誤 |
C、推理形式錯(cuò)誤 |
D、非以上錯(cuò)誤 |
考點(diǎn):演繹推理的基本方法
專題:推理和證明
分析:本題考查的知識(shí)點(diǎn)是演繹推理的基本方法及空間中線面關(guān)系,在使用三段論推理證明中,如果命題是錯(cuò)誤的,則可能是“大前提”錯(cuò)誤,也可能是“小前提”錯(cuò)誤,也可能是邏輯錯(cuò)誤,我們分析:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的推理過程,不難得到結(jié)論.
解答:
解:直線平行于平面,則直線可與平面內(nèi)的直線平行、異面、異面垂直.
故大前提錯(cuò)誤.
故答案為:A
點(diǎn)評(píng):有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,是因?yàn)?/div>
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)f0(x)=ex-e-x,且對(duì)任意的n∈N,都有fn+1(x)=fn′(x),則f2013(x)=( )
A、ex-e-x |
B、e-x-ex |
C、ex+e-x |
D、-ex-e-x |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
一個(gè)如圖所示的不規(guī)則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點(diǎn)至兩端點(diǎn)A,B所在直線的距離)的拋物線形的一部分,現(xiàn)要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
求經(jīng)過M(-2,1)且與A(-1,2)、B(3,0)兩點(diǎn)距離相等的直線方程
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若復(fù)數(shù)
的模為
,則實(shí)數(shù)a的值是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在等差數(shù)列{an}中,Sn是其前n項(xiàng)的和,已知a2,a5,a14成等比數(shù)列,且S20=400,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求和:a1+a4+a7+…+a3n+1.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)f(x)是定義在整數(shù)集上的函數(shù),且f(x)滿足:“當(dāng)f(k)≥k2成立時(shí),總可以推出f(k+1)≥(k+1)2成立”.那么下列命題總成立的是( )
A、若f(3)≥9成立,則當(dāng)k≥1時(shí)均有f(k)≥k2成立 |
B、若f(5)≥25成立,則當(dāng)k≤5時(shí)均有f(k)≥k2成立 |
C、若f(7)<49成立,則當(dāng)k≥8時(shí)均有f(k)<k2成立 |
D、若f(4)=25成立,則當(dāng)k≥4時(shí)均有f(k)≥k2成立 |
查看答案和解析>>