【題目】如圖,在三棱臺(tái)中,,G,H分別為,上的點(diǎn),平面平面,,.
(1)證明:平面平面;
(2)若,,求二面角的大小.
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)證明,得到平面,得到答案.
(2)分別以,,所在的直線為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,計(jì)算平面的一個(gè)法向量為,平面的一個(gè)法向量為
,計(jì)算夾角得到答案.
(1)因?yàn)槠矫?/span>平面,平面平面,
平面平面,所以.
因?yàn)?/span>,所以四邊形為平行四邊形,所以,
因?yàn)?/span>,所以,H為的中點(diǎn).
同理G為的中點(diǎn),所以,因?yàn)?/span>,所以,
又且,所以四邊形是平行四邊形,所以,
又,所以.
又,平面,,所以平面,
又平面,所以平面平面
(2),,,,,所以.
分別以,,所在的直線為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則,,,.
設(shè)平面的一個(gè)法向量為,因?yàn)?/span>,
則,取,得.
設(shè)平面的一個(gè)法向量為,因?yàn)?/span>,
則,取,得.
所以,則二面角的大小為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在這智能手機(jī)爆發(fā)的時(shí)代,大部分高中生都有手機(jī),在手機(jī)面前,有些學(xué)生無(wú)法抵御手機(jī)尤其是手機(jī)游戲和短視頻的誘惑,從而導(dǎo)致無(wú)法專心完成學(xué)習(xí)任務(wù),成績(jī)下滑;但是對(duì)于自制力強(qiáng),能有效管理自己的學(xué)生,手機(jī)不僅不會(huì)對(duì)他們的學(xué)習(xí)造成負(fù)面影響,還能成為他們學(xué)習(xí)的有力助手,我校某研究型學(xué)習(xí)小組調(diào)查研究“中學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響”,部分統(tǒng)計(jì)數(shù)據(jù)如表:
參考數(shù)據(jù):,其中.
(1)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用手機(jī)對(duì)學(xué)習(xí)有影響?
(2)研究小組將該樣本中不使用手機(jī)且成績(jī)優(yōu)秀的同學(xué)記為組,使用手機(jī)且成績(jī)優(yōu)秀的同學(xué)記為組,計(jì)劃從組推選的4人和組推選的2人中,隨機(jī)挑選兩人來(lái)分享學(xué)習(xí)經(jīng)驗(yàn).求挑選的兩人中一人來(lái)自組、另一人來(lái)自組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)設(shè)是的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:
(2)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求下列橢圓的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在軸上,離心率,且經(jīng)過(guò)點(diǎn);
(2)以坐標(biāo)軸為對(duì)稱軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,并且過(guò)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】食品安全問(wèn)題越來(lái)越引起人們的重視,農(nóng)藥、化肥的濫用對(duì)人民群眾的健康帶來(lái)一定的危害,為了給消費(fèi)者帶來(lái)放心的蔬菜,某農(nóng)村合作社每年投入200萬(wàn)元,搭建了甲、乙兩個(gè)無(wú)公害蔬菜大棚,每個(gè)大棚至少要投入20萬(wàn)元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬(wàn)元)滿足.設(shè)甲大棚的投入為(單位:萬(wàn)元),每年兩個(gè)大棚的總收益為(單位:萬(wàn)元)
(1)求的值;
(2)試問(wèn)如何安排甲、乙兩個(gè)大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且在處切線垂直于軸.
(1)求的值;
(2)求函數(shù)在上的最小值;
(3)若恒成立,求滿足條件的整數(shù)的最大值.
(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));以原點(diǎn)極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
⑴ 求曲線的普通方程與曲線的直角坐標(biāo)方程;
⑵ 試判斷曲線與是否存在兩個(gè)交點(diǎn),若存在求出兩交點(diǎn)間的距離;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,且過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)直線l交橢圓C于不同的兩點(diǎn)A、B,且中點(diǎn)E在直線上,線段的垂直平分線交y軸于點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水是生命之源,為了引導(dǎo)市民科學(xué)用水,我國(guó)加快階梯水價(jià)推行,原則是“保基本、建機(jī)制、促節(jié)約”,其中“;”是指保證至少80%的居民用戶用水價(jià)格不變,“建機(jī)制”是制定合理的階梯用水價(jià)格某城市采用簡(jiǎn)單隨機(jī)抽樣的方法從郊區(qū)和城區(qū)分別抽取5戶和20戶居民的年人均用水量(單位:噸)進(jìn)行調(diào)研,抽取數(shù)據(jù)的莖葉圖如下:
(1)若在郊區(qū)的這5戶居民中隨機(jī)抽取2戶,求“被抽取的2戶年人均用水量的和超過(guò)60噸”的概率;
(2)若該城市郊區(qū)和城區(qū)的居民戶數(shù)比為1:5,現(xiàn)將年人均用水量不超過(guò)30噸的用戶定義為第一階梯用戶,只保證這一梯次的居民用戶用水價(jià)格不變,試根據(jù)樣本估計(jì)總體的思想分析此方案是否符合國(guó)家“保基本”政策.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com