5.已知點P(3m,-2m)(m<0)在角α的終邊上,求sinα,cosα,tanα.

分析 直接利用任意角的三角函數(shù),求解即可.

解答 解:角α的終邊為點P(-3,4),所以x=3m,y=-2m,r=-$\sqrt{13}m$,
sinα=$\frac{y}{r}$=$\frac{2}{\sqrt{13}}=\frac{2\sqrt{13}}{13}$.cosα=$\frac{x}{r}$=$-\frac{3}{\sqrt{13}}=-\frac{3\sqrt{13}}{13}$,
tanα=$\frac{sinα}{cosα}=-\frac{3}{2}$.

點評 本題考查任意角的三角函數(shù)的定義,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若向量$\overrightarrow{a}$=(3,m),$\overrightarrow$=(2,-1),$\overrightarrow{a}$•$\overrightarrow$=0,則實數(shù)m的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)$f(x)=2sin({2x+ϕ+\frac{π}{3}})$是奇函數(shù),且在區(qū)間$[{0,\frac{π}{4}}]$是減函數(shù),則ϕ的值可以是( 。
A.$-\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,若輸出的S為1525,則判斷框內(nèi)應(yīng)填( 。
A.k<4B.k≤4C.k>4D.k≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)兩條漸近線的夾角為60°,該雙曲線的離心率為2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=sinx(cosx-\sqrt{3}sinx)$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在x∈[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某三棱錐的三視圖如圖所示,主視圖和俯視圖為全等的等腰直角三角形,則該棱錐最長的棱長為( 。
A.$\frac{3}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項;
(2)求數(shù)列$\left\{{{2^{a_n}}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A,B,C成等差數(shù)列,且最大邊和最小邊是方程2x2-6x+3=0的兩根,則△ABC的外接圓半徑等于$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案