6.若z•i=1-2i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)是( 。
A.-2-iB.2-iC.2+iD.-2+i

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由z•i=1-2i,的$z=\frac{1-2i}{i}=\frac{(1-2i)(-i)}{-{i}^{2}}=-2-i$,
∴$\overline{z}=-2+i$,
故選:D.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某籃球隊甲、乙兩名運動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個,命中個數(shù)的莖葉圖如圖所示,則下列結(jié)論錯誤 的一個是(  )
A.甲的極差是29B.甲的中位數(shù)是25
C.乙的眾數(shù)是21D.甲的平均數(shù)比乙的大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中正確的是( 。
A.若p:?x∈R,ex>xe,q:?x0∈R,|x0|≤0,則(¬p)∧q為假
B.x=1是x2-x=0的必要不充分條件
C.直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長為半徑作扇形ACD和扇形BEF,D、E在AB上,F(xiàn)在BC上.在△ACB中任取一點,這一點恰好在圖中陰影部分的概率是( 。
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2016年12月1日,漢孝城際鐵路正式通車運營.除始發(fā)站(漢口站)與終到站(孝感東站)外,目前沿途設(shè)有7個?空,其中,武漢市轄區(qū)內(nèi)有4站(后湖站、金銀潭站、天河機場站、天河街站),孝感市轄區(qū)內(nèi)有3站(閔集站、毛陳站、槐蔭站).為了了解該線路運營狀況,交通管理部門計劃從這7個車站中任選3站調(diào)研.
(1)求孝感市轄區(qū)內(nèi)至少選中1個車站的概率;
(2)若孝感市轄區(qū)內(nèi)共選中了X個車站,求隨機變量X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在Rt△ACB中,∠ACB=90°,AB=2AC,分別以A、B為圓心,AC的長為半徑作扇形ACD和扇形BDE,D在AB上,E在BC上.在△ACB中任取一點,這一點恰好在圖中陰影部分的概率是(  )
A.1-$\frac{{\sqrt{3}π}}{6}$B.$\frac{{\sqrt{3}π}}{6}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是根據(jù)x,y的觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10)得到的散點圖,由這些散點圖可以判斷變量x,y具有相關(guān)關(guān)系的圖是(  )
A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的極坐標(biāo)方程為$\sqrt{3}ρcosθ+ρsinθ-1=0$,曲線C的極坐標(biāo)方程為ρ=4.
(1)將曲線C的極坐標(biāo)方程化為普通方程;
(2)若直線l與曲線交于A,B兩點,求線段AB 的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù):f(x)=$\frac{1}{x}$,f(x)=x4,f(x)=2x,f(x)=x-$\frac{1}{x}$,則可以輸出的函數(shù)是( 。
A.f(x)=$\frac{1}{x}$B.f(x)=x4C.f(x)=2xD.f(x)=x-$\frac{1}{x}$

查看答案和解析>>

同步練習(xí)冊答案