【題目】已知數(shù)列的前n項(xiàng)和為且,其中為常數(shù).
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)記,數(shù)列的前n項(xiàng)和為,若不等式對任意恒成立,求實(shí)數(shù)k的取值范圍.
【答案】(1),;(2)
【解析】
(1)將代入已知等式即可求得的值;利用作差法即可求得數(shù)列的通項(xiàng)公式;(2)由(1)求得及,構(gòu)造新函數(shù),進(jìn)而可得其最大項(xiàng)的值,從而可得k的取值范圍.
(1)由題意,數(shù)列滿足,
令,可得,
又由,解得.
因?yàn)?/span>,則
兩式相減,可得,整理得,
所以數(shù)列是以首項(xiàng)為4,公比為2的等比數(shù)列,
所以數(shù)列的通項(xiàng)公式為.
(2)由(1)可得,
所以,
因?yàn)?/span>恒成立,即恒成立,
即對任意恒成立,
設(shè),則,
當(dāng)時(shí),,數(shù)列單調(diào)遞減;
當(dāng)時(shí),,數(shù)列單調(diào)遞增,
又因?yàn)?/span>,所以數(shù)列最大項(xiàng)的值為,
所以,即k的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)寫出曲線C的普通方程和極坐標(biāo)方程;
(Ⅱ)M,N為曲線C.上兩點(diǎn),若OM⊥ON,求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有9位身高各異的同學(xué)拍照留念,分成前后兩排,前排4人,后排5人,要求每排同學(xué)的身高從中間到兩邊依次遞減,則不同的排隊(duì)方式有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列滿足:,.
(Ⅰ)若;
(。┣笞C:;
(ⅱ)數(shù)列的前項(xiàng)和為且,求證:;
(Ⅱ)若對任意的,都有,寫出的取值范圍并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的右焦點(diǎn)為,過點(diǎn)且垂直于軸的弦長為3,直線與圓相切,且與橢圓交于,兩點(diǎn),為橢圓的右頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)用,分別表示和的面積,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一排10個(gè)位置的空停車場,甲、乙、丙三輛不同的車去停放,要求每輛車左右兩邊都有空車位且甲車在乙、丙兩車之間的停放方式共有_________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天干地支紀(jì)年法源于中國,中國自古便有十天干與十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天于回到“甲”重新開始,即“甲戌”,“乙亥”,然后地支回到“子”重新開始,即“丙子”,以此類推已知1949年為“己丑”年,那么到中華人民共和國成立70年時(shí)為( )
A.丙酉年B.戊申年C.己申年D.己亥年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,△PAD為等邊三角形,AB=ADCD=2,∠BAD=∠ADC=90°,∠PDC=60°,E為BC的中點(diǎn).
(1)證明:AD⊥PE.
(2)求直線PA與平面PDE所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓過橢圓的下頂點(diǎn)及左、右焦點(diǎn),,過橢圓的左焦點(diǎn)的直線與橢圓相交于,兩點(diǎn),線段的中垂線交軸于點(diǎn)且垂足為點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:當(dāng)直線斜率變化時(shí)為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com