4.下列四組函數(shù)中表示同一函數(shù)的是( 。
A.f(x)=$\root{3}{{x}^{3}}$與$g(x)=\sqrt{x^2}$B.f(x)=|x|與$g(x)={({\sqrt{x}})^2}$
C.$f(x)=\sqrt{1-x}×\sqrt{1+x}$與$g(x)=\sqrt{1-{x^2}}$D.f(x)=x0與g(x)=1

分析 根據(jù)兩個函數(shù)是同一個函數(shù)的定義,函數(shù)的三要素均相等,或兩個函數(shù)的圖象一致,根據(jù)函數(shù)的定義域與函數(shù)的解析式一致時,函數(shù)的值域一定相同,我們逐一分析四個答案中兩個函數(shù)的定義域和解析式是否一致,即可得到答案.

解答 解:對于A:f(x)=x,g(x)=|x|,不是同一函數(shù),
對于B:f(x)的定義域是R,g(x)的定義域是[0,+∞),不是同一函數(shù),
對于C:f(x)=g(x),表達式相同,定義域都是[-1,1],是同一函數(shù),
對于D:f(x)的定義域是{x|x≠0},g(x)的定義域是R,不是同一函數(shù),
故選:C.

點評 本題考查的知識點是判斷兩個函數(shù)是否為同一函數(shù),熟練掌握判斷兩個函數(shù)是否為同一函數(shù)的方法,正確理解兩個函數(shù)表示同一函數(shù)的概念是解答本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知曲線C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)設M(1,2),直線l與曲線C交點為A、B,試求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知直線l過定點A(2,-1),圓C:x2+y2-8x-6y+21=0.
(1)若l與圓C相切,求l的方程;
(2)若l與圓C交于M,N兩點,求△CMN面積的最大值,并求此時l的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知等比數(shù)列{an}的前n項和為Sn,若${S_n}=p•{3^n}-2$,則p等于( 。
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=|x+m|-|x+2|,若不等式f(x)+x≤0的解集為A,且[-1,1]⊆A,則實數(shù)m的取值范圍為( 。
A.(-1,1)B.[-1,1]C.(-1,1]D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某中學奧數(shù)培訓班共有14人,分為兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,其中甲組學生成績的平均數(shù)是88,乙組學生成績的中位數(shù)是89,則n-m的值( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.圓錐的母線長為L,過頂點的最大截面的面積為$\frac{1}{2}{L}^{2}$,則圓錐底面半徑與母線長的比$\frac{r}{L}$的取值范圍是( 。
A.0$<\frac{r}{L}<\frac{1}{2}$B.$\frac{1}{2}≤\frac{r}{L}<1$C.0$<\frac{r}{L}<\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}≤\frac{r}{L}<1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知命題p:關于x的一元二次方程x2+2mx+2m2-$\frac{5}{2}$m+1=0有兩個實根,命題q:x2+(1-4m)x+4m2-1>0 解集為R.若命題“p∧q”是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若將函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象向右平移m(m>0)個單位長度,所得函數(shù)圖象關于y軸對稱,則m的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

同步練習冊答案