14.已知曲線C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)設M(1,2),直線l與曲線C交點為A、B,試求|MA|•|MB|的值.

分析 (1)化簡橢圓的方程為參數(shù)方程,化簡直線的參數(shù)方程與普通方程即可.
(2)聯(lián)立直線與橢圓的方程,利用韋達定理,結(jié)合參數(shù)的幾何意義求解即可.

解答 解:(1)C參數(shù)方程$\left\{\begin{array}{l}x=2cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù)).$l:\left\{\begin{array}{l}x=1+\frac{1}{2}t⇒t=2(x-1)\\ y=2+\frac{{\sqrt{3}}}{2}t⇒y-2=\sqrt{3}(x-1)\end{array}\right.$,
∴直線l的方程為$\sqrt{3}x-y+2-\sqrt{3}=0$.
(2)曲線C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$,
可得:$3{(1+\frac{1}{2}t)^2}+4{(2+\frac{{\sqrt{3}}}{2}t)^2}=12$,$3(1+t+\frac{1}{4}{t^2})+4(4+2\sqrt{3}t+\frac{3}{4}{t^2})=12$,
$\frac{15}{4}{t^2}+(3+8\sqrt{3})t+7=0$,
∴${t_1}+{t_2}=-\frac{{4(3+8\sqrt{3})}}{15}$,${t_1}{t_2}=\frac{28}{15}$,
$|MA|•|MB|=|{t_1}{t_2}|=\frac{28}{15}$.

點評 本題考查直線與橢圓的位置關(guān)系的綜合應用,參數(shù)方程的應用,直線參數(shù)方程的幾何意義,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知點(0,-$\sqrt{5}$)是中心在原點,長軸在x軸上的橢圓的一個頂點,離心率為$\frac{\sqrt{6}}{6}$,橢圓的左右焦點分別為F1和F2
(1)求橢圓方程;
(2)點M在橢圓上,求△MF1F2面積的最大值;
(3)試探究橢圓上是否存在一點P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點(1,$\frac{3}{2}$).
(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點P($\frac{1}{5}$,0),有|MP|=|NP|,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知若函數(shù)f(x)=x2+2(a-1)x+2
(1)當a=2時,試證明f(x)在(0,+∞)上是增函數(shù);
(2)若f(f(2))=14,試求a的值;
(3)若函數(shù)f(x)在區(qū)間(-∞,4)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,則a2014的值為(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知命題p:?x∈R,2x=5,則¬p為( 。
A.?x∉R,2x≠5B.?x∈R,2x≠5C.?x∉R,2x≠5D.?x∈R,2x≠5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設函數(shù)f(x)=3x+cos(x+φ),x∈R,則“φ=$\frac{π}{2}$”是“函數(shù)f(x)為奇函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知a2+4b2=1,則2a2+4ab的最大值為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列四組函數(shù)中表示同一函數(shù)的是( 。
A.f(x)=$\root{3}{{x}^{3}}$與$g(x)=\sqrt{x^2}$B.f(x)=|x|與$g(x)={({\sqrt{x}})^2}$
C.$f(x)=\sqrt{1-x}×\sqrt{1+x}$與$g(x)=\sqrt{1-{x^2}}$D.f(x)=x0與g(x)=1

查看答案和解析>>

同步練習冊答案