【題目】已知的頂點(diǎn)坐標(biāo)分別是,的外接圓為.

1)求圓的方程;

2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù):若不存在,說明理由;

3)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù):若不存在,說明理由.

【答案】(1) ;(2) 存在點(diǎn),且有2個(gè); (3) 存在點(diǎn),且有2個(gè).

【解析】

(1)設(shè)外接圓的方程為三點(diǎn)代入圓的方程,列出方程組,求得的值,即可得到圓的方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,由化簡得,利用直線與圓的關(guān)系,即可求解.

(3) 設(shè)點(diǎn)的坐標(biāo)為,化簡得,利用圓與圓的位置關(guān)系判斷,即可求解.

(1)設(shè)外接圓的方程為三點(diǎn)代入圓的方程得: ,解得: ,即圓的方程為即為;

(2)設(shè)點(diǎn)的坐標(biāo)為,由所以化簡得:, 即考查直線與圓的位置關(guān)系, 點(diǎn)到直線的距離為,所以直線與圓相交,故滿足條件的點(diǎn)有兩個(gè).

(3) 設(shè)點(diǎn)的坐標(biāo)為,所以化簡得,圓心距為,所以兩圓相交, 故滿足條件的點(diǎn)有兩個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.若上的點(diǎn)對(duì)應(yīng)的參數(shù)為,點(diǎn)上,點(diǎn)的中點(diǎn),求點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020122日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動(dòng).專家通過全基因組比對(duì)發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達(dá)到70%40%的序列相似性.這種新型冠狀病毒對(duì)人們的健康生命帶來了嚴(yán)重威脅因此,某生物疫苗研究所加緊對(duì)新型冠狀病毒疫苗進(jìn)行實(shí)驗(yàn),并將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:

未感染病毒

感染病毒

總計(jì)

未注射疫苗

20

注射疫苗

30

總計(jì)

50

50

100

現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

1)求列聯(lián)表中的數(shù)據(jù),,的值;

2)能否有99.9%把握認(rèn)為注射此種疫苗對(duì)預(yù)防新型冠狀病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形垂直于直角梯形,中點(diǎn),.

1)求證:∥平面

2)線段上是否存在點(diǎn),使與平面所成角的正切值為?若存在,請(qǐng)求出的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若,求函數(shù)的極值;

2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

3)若對(duì)內(nèi)任意一個(gè),都有 成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球n個(gè),已知從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.

(1)n的值;

(2)從袋子中不放回地隨機(jī)抽取2個(gè)球,記第一次取出小球標(biāo)號(hào)為a,第二次取出的小球標(biāo)號(hào)為b.①ab2”為事件A,求事件A的概率;

在區(qū)間[0,2]內(nèi)任取2個(gè)實(shí)數(shù)x,y,求事件x2y2>(ab)2恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)x210x(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)51x1 450(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右支上一點(diǎn),分別向圓和圓作切線,切點(diǎn)分別為,,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與圓相切,圓心的坐標(biāo)為

1)求圓的方程;

2)設(shè)直線與圓沒有公共點(diǎn),求的取值范圍;

3)設(shè)直線與圓交于、兩點(diǎn),且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案