【題目】已知函數(shù),

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)當時,直接寫出函數(shù)的單調區(qū)間(不需證明)

(3)若,求a的取值范圍.

【答案】(1)為偶函數(shù),見解析;(2)單調增區(qū)間為單調減區(qū)間為;(3).

【解析】

1)根據(jù)題意,,先分析函數(shù)的定義域,進而可得,結合函數(shù)奇偶性的定義分析可得答案;

2)根據(jù)題意,,由復合函數(shù)單調性的判定方法分析可得答案;

3)根據(jù)題意,若,即,結合對數(shù)的運算性質分析可得答案.

1)根據(jù)題意,函數(shù),,

必有,解可得,即函數(shù)的定義域為

又由,

則函數(shù)為偶函數(shù);

2)根據(jù)題意,,

又由,其遞增區(qū)間為,遞減區(qū)間為

3)根據(jù)題意,若,即,

時,,符合題意;

時,,若,即,解可得:

此時的取值范圍,

綜合可得:的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某闖關游戲共有兩關,游戲規(guī)則:先闖第一關,當?shù)谝魂P闖過后,才能進入第二關,兩關都闖過,則闖關成功,且每關各有兩次闖關機會.已知闖關者甲第一關每次闖過的概率均為,第二關每次闖過的概率均為.假設他不放棄每次闖關機會,且每次闖關互不影響.

(1)求甲恰好闖關3次才闖關成功的概率;

(2)記甲闖關的次數(shù)為,求隨機變量的分布列和期望.。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的可導函數(shù)滿足,記的導函數(shù)為,當時恒有.,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年某地區(qū)初中升學體育考試規(guī)定:考生必須參加長跑、擲實心球、1分鐘跳繩三項測試.某學校在九年級上學期開始,就為掌握全年級學生1分鐘跳繩情況,抽取了100名學生進行測試,得到下面的頻率分布直方圖.

(Ⅰ)規(guī)定學生1分鐘跳繩個數(shù)大于等于185為優(yōu)秀.若在抽取的100名學生中,女生共有50人,男生1分鐘跳繩個數(shù)大于等于185的有28人.根據(jù)已知條件完成下面的列聯(lián)表,并根據(jù)這100名學生的測試成績,判斷能否有99%的把握認為學生1分鐘跳繩成績是否優(yōu)秀與性別有關.

1分鐘跳繩成績

優(yōu)秀

不優(yōu)秀

合計

男生人數(shù)

28

女生人數(shù)

100

合計

100

(Ⅱ)根據(jù)往年經驗,該校九年級學生經過訓練,正式測試時每人1分鐘跳繩個數(shù)都有明顯進步.假設正式測試時每人1分鐘跳繩個數(shù)都比九年級上學期開始時增加10個,全年級恰有2000名學生,若所有學生的1分鐘跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和標準差估計,各組數(shù)據(jù)用中點值代替),估計正式測試時1分鐘跳繩個數(shù)大于183的人數(shù)(結果四舍五入到整數(shù)

附: ,其中 .

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

若隨機變量服從正態(tài)分布,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),各項均不相等的數(shù)列滿足.令.給出下列三個命題:

(1)存在不少于3項的數(shù)列,使得;

(2)若數(shù)列的通項公式為,則恒成立;

(3)若數(shù)列是等差數(shù)列,則恒成立.

其中真命題的序號是(

A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856331)

甲、乙兩家快餐店對某日7個時段的光顧的客人人數(shù)進行統(tǒng)計并繪制莖葉圖如下圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.

(Ⅰ)求ab的值,并計算乙數(shù)據(jù)的方差;

(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點的直線與拋物線交于 兩點,又過兩點分別作拋物線的切線,兩條切線交于點。

1)證明:直線的斜率之積為定值;

2)求面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx=2sinωx+φ)(ω0,|φ|)的一個零點為,其圖象距離該零點最近的一條對稱軸為x=

)求函數(shù)fx)的解析式;

)若關于x的方程fx+log2k=0x[,]上恒有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取到的項:第一次取1;第二次取2個連續(xù)的偶數(shù)24;第三次取3個連續(xù)的奇數(shù)57,9:第四次取4個連續(xù)的偶數(shù)1012,1416……按此規(guī)律一直取下去,得到一個子數(shù)列12,4,5,79,1012,1416…,則在這個子數(shù)列中,第2014個數(shù)是(

A.3965B.3966C.3968D.3969

查看答案和解析>>

同步練習冊答案