【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取到的項:第一次取1;第二次取2個連續(xù)的偶數(shù)2,4;第三次取3個連續(xù)的奇數(shù)5,7,9:第四次取4個連續(xù)的偶數(shù)10,12,1416……按此規(guī)律一直取下去,得到一個子數(shù)列12,4,5,7,9,10,12,1416…,則在這個子數(shù)列中,第2014個數(shù)是(

A.3965B.3966C.3968D.3969

【答案】A

【解析】

本題是歸納推理,要從中找出數(shù)字遞增的規(guī)律,第組有連續(xù)個奇數(shù)和偶數(shù)構(gòu)造,其中奇偶性根的奇偶性相同,然后利用該規(guī)律解題.

記該數(shù)列12,45,7,910,12,14,16,17,,

1開始依次按如下規(guī)則取它的項:第一次取1,第二次取2個連續(xù)偶數(shù)2、4;

第三次取3個連續(xù)奇數(shù)57、9;第四次取4個連續(xù)偶數(shù)1012、14、16;

第五次取5個連續(xù)奇數(shù)1719、21、2325,

可知:第一組的最后一個數(shù)依次為:1,4,9,16,25

歸納得到,每一組的最后一個數(shù)依次為:,,,,

即第個組最后一個數(shù)為

由于,

所以位于第63組,倒數(shù)第三個,

因為第63組最后一個數(shù)為,

由組內(nèi)的差為2,得:

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)當(dāng)時,直接寫出函數(shù)的單調(diào)區(qū)間(不需證明)

(3)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,,.

(1)若中點,求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,1323.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校從4名男教師和3名女教師中選3名派到3個不同國家(每個國家1名教師)交流訪問,要求這3名教師中男女都有,則不同的選派方案共有( )種

A.360B.150C.180D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各對事件中,不是相互獨立事件的有( )

A.運動員甲射擊一次,“射中9環(huán)”與“射中8環(huán)”

B.甲乙兩運動員各射擊一次,“甲射中10環(huán)”與“乙射中9環(huán)”

C.甲乙兩運動員各射擊一次,“甲乙都射中目標(biāo)”與“甲乙都沒有射中目標(biāo)”

D.甲乙兩運動員各射擊一次,“至少有1人射中目標(biāo)”與“甲射中目標(biāo)但乙未射中目標(biāo)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓()的離心率為,圓軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下面左圖,在直角梯形中,,,,,點上,且,將沿折起,得到四棱錐(如下面右圖).

1)求四棱錐的體積的最大值;

2)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案