【題目】如下面左圖,在直角梯形中,,,,,,點(diǎn)在上,且,將沿折起,得到四棱錐(如下面右圖).
(1)求四棱錐的體積的最大值;
(2)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由.
【答案】(1);(2)存在,
【解析】
(1)當(dāng)平面平面時,體積最大;根據(jù)已知條件,求得底面面積和棱錐的高,即可求得體積的最大值;
(2)構(gòu)造與平面平行的平面,即可容易求得點(diǎn)所在位置.
(1)由題意,要使得四棱錐的體積最大,就要使平面平面.
設(shè)為中點(diǎn),連接.如下圖所示:
,,
平面平面,平面平面.平面.
平面
,則,
四棱錐的體積的最大值為.
(2)過點(diǎn)作交于點(diǎn),則,
過點(diǎn)作交于點(diǎn),連接,則
又,平面,平面,平面
,平面,平面,平面
又,,平面平面
平面,平面
所以在上存在點(diǎn),使得平面,且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取到的項:第一次取1;第二次取2個連續(xù)的偶數(shù)2,4;第三次取3個連續(xù)的奇數(shù)5,7,9:第四次取4個連續(xù)的偶數(shù)10,12,14,16……按此規(guī)律一直取下去,得到一個子數(shù)列1,2,4,5,7,9,10,12,14,16…,則在這個子數(shù)列中,第2014個數(shù)是( )
A.3965B.3966C.3968D.3969
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,過原點(diǎn)且斜率為1的直線交橢圓于兩點(diǎn),四邊形的周長與面積分別為12與.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與圓相切,且與橢圓交于兩點(diǎn),求原點(diǎn)到的中垂線的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.
(1)求證:;
(2)若時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱中,,P是的中點(diǎn).
(1)求平面將三棱柱分成的兩部分的體積之比;
(2)求平面與平面ABC所成二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有三根針和套在一根針上的個金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.
將個金屬片從1號針移到3號針最少需要移動的次數(shù)記為,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列前項和為,且滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列前項和;
(3)在數(shù)列中,是否存在連續(xù)的三項,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.
分類意識強(qiáng) | 分類意識弱 | 合計 | |
試點(diǎn)后 | |||
試點(diǎn)前 | |||
合計 |
已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識強(qiáng)的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)判斷是否有的把握認(rèn)為居民分類意識的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;
參考公式:,其中.
下面的臨界值表僅供參考
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:
(1)四面體EBCD的體積有最大值和最小值;
(2)存在某個位置,使得;
(3)設(shè)二面角的平面角為,則;
(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.
其中,正確說法的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com