【題目】如圖,四棱柱ABCD-A1B1C1D1的底面為菱形,AA1⊥底面ABCD,∠BAD=120°,AB=2E,F分別為CDAA1的中點(diǎn).

(Ⅰ)求證:DF∥平面B1AE;

(Ⅱ)若直線AD1與平面B1AE所成角的正弦值為,求AA1的長(zhǎng);

(Ⅲ)在(Ⅱ)的條件下,求二面角B1-AE-D1的正弦值.

【答案】(Ⅰ)證明見解析(Ⅱ)2

【解析】

I)取AB1的中點(diǎn)G,連接FG,GE,證明四邊形GEDF是平行四邊形,可得DFEG,故而DF平面B1AE;

(II)建立空間坐標(biāo)系,求出平面B1AE的法向量,設(shè)AA1=tt0),令sinα=|cos,|===,求出t;

(III)求出兩半平面的法向量,計(jì)算法向量的夾角得出二面角的大小

(Ⅰ)證明:取AB1的中點(diǎn)G,連接FG,GE,

,FGA1B1,,DEA1B1,

FG=DE,FGDE,

GEDF是平行四邊形,

DFEG,

DF平面B1AE,EG平面B1AE,

DF平面B1AE

解:(Ⅱ)在菱形ABCD中,

∵∠BAD=120°,

∴∠ADC=60°,

∴△ACD是等邊三角形,

AECD,

AEAB,

AA1平面ABCD,

AA1AB,AA1AE,

A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

設(shè)AA1=tt0),

,

,,

設(shè)平面B1AE的法向量=x,y,z),則,即,

不妨取z=-2,得=t,0,-2),

設(shè)直線AD1與平面B1AE所成的角為α

sinα=|cos,|===

解得t=2,即AA1的長(zhǎng)為2

(Ⅲ)設(shè)平面D1AE的法向量=x,y,z),

,

,即,

不妨取z=1,=2,0,1),

設(shè)二面角B1-AE-D1的平面角為θ,則|cosθ|=|cos|===

,即二面角B1-AE-D1的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(|x|﹣b)2+c,函數(shù)g(x)=x+m.

(1)當(dāng)b=2,m=﹣4時(shí),f(x)g(x)恒成立,求實(shí)數(shù)c的取值范圍;

(2)當(dāng)c=﹣3,m=﹣2時(shí),方程f(x)=g(x)有四個(gè)不同的解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民月收入總額(工資、薪金等)不超過免征額的部分不必納稅,超過免征額的部分為全月應(yīng)納稅所得額,個(gè)人所得稅稅款按稅率表分段累計(jì)計(jì)算.為了給公民合理減負(fù),穩(wěn)步提升公民的收入水平,自2018101日起,個(gè)人所得稅免征額和稅率進(jìn)行了調(diào)整,調(diào)整前后的個(gè)人所得稅稅率表如下:

1)已知小李20189月份上交的稅費(fèi)是295元,10月份月工資、薪金等稅前收入與9月份相同,請(qǐng)幫小李計(jì)算一下稅率調(diào)整后小李10月份的稅后實(shí)際收入是多少?

2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100位不同層次員工的稅前收入,并制成下面的頻率分布直方圖.

(。┱(qǐng)根據(jù)頻率分布直方圖估計(jì)該公司員工稅前收入的中位數(shù);

(ⅱ)同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,按調(diào)整后稅率表,試估計(jì)小李所在的公司員工該月平均納稅多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,點(diǎn)在橢圓上,且的周長(zhǎng)為

1)求橢圓的方程;

2)已知過點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)在直線上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代社會(huì)的競(jìng)爭(zhēng),是人才的競(jìng)爭(zhēng),各國(guó)、各地區(qū)、各單位都在廣納賢人,以更好更快的促進(jìn)國(guó)家、地區(qū)、單位的發(fā)展.某單位進(jìn)行人才選拔考核,該考核共有三輪,每輪都只設(shè)置一個(gè)項(xiàng)目問題,能正確解決項(xiàng)目問題者才能進(jìn)入下一輪考核;不能正確解決者即被淘汰.三輪的項(xiàng)目問題都正確解決者即被錄用.已知A選手能正確解決第一、二、三輪的項(xiàng)目問題的概率分別為、,且各項(xiàng)目問題能否正確解決互不影響.

1)求A選手被淘汰的概率;

2)設(shè)該選手在選拔中正確解決項(xiàng)目問題的個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;

(1)將表示為的函數(shù);

(2)若,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)列,稱(其中)為數(shù)列的前k項(xiàng)“波動(dòng)均值”.若對(duì)任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.

1)若數(shù)列1,2為“趨穩(wěn)數(shù)列”,求的取值范圍;

2)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;

3)已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為整數(shù),前項(xiàng)的和為. 且對(duì)任意,都有, 試計(jì)算:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足,其中A,B是兩個(gè)確定的實(shí)數(shù),

1)若,求的前n項(xiàng)和;

2)證明:不是等比數(shù)列;

3)若,數(shù)列中除去開始的兩項(xiàng)外,是否還有相等的兩項(xiàng),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱中,,側(cè)面是邊長(zhǎng)為4的菱形,,、分別為、的中點(diǎn).

1)求證:平面;

2)若,求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案