20.若兩整數(shù)a、b除以同一個整數(shù)m,所得余數(shù)相同,即$\frac{a-b}{m}$=k(k∈Z),則稱a、b對模m同余,用符號a≡b(mod m)表示,若a≡10(mod 6)(a>10),滿足條件的a由小到大依次記為a1,a2…an,…,則數(shù)列{an}的前16項和為976.

分析 由兩數(shù)同余的定義,m是一個正整數(shù),對兩個正整數(shù)a、b,若a-b是m的倍數(shù),則稱a、b模m同余,我們易得若a≡10(mod 6)(a>10),則a-10為6的整數(shù)倍,則a=6n+10,再根據(jù)等差數(shù)列{an}的前n項公式計算即可得答案.

解答 解:由兩數(shù)同余的定義,
m是一個正整數(shù),對兩個正整數(shù)a、b,若a-b是m的倍數(shù),
則稱a、b模m同余,
我們易得若a≡10(mod 6)(a>10),
則a-10為6的整數(shù)倍,
則a=6n+10,
故a=16,22,28,…均滿足條件.
由等差數(shù)列{an}的前n項公式${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d$,
則${S}_{16}=16×16+\frac{16×(16-1)}{2}×6$=976.
故答案為:976.

點評 本題考查了整除的定義,這是一道新運算類的題目,根據(jù)新運算的定義,將已知中的數(shù)據(jù)代入進行運算,易得最終結(jié)果,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若正數(shù)x,y滿足$\frac{1}{x}+\frac{1}{y}$=1,則$\frac{1}{x-1}+\frac{3}{y-1}$的最小值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,一個摩天輪的半徑為18m,12分鐘旋轉(zhuǎn)一周,它的最低點P0離地面2m,
∠P0OP1=15°,摩天輪上的一個點P從P1開始按逆時針方向旋轉(zhuǎn),則點P離地
面距離y(m)與時間x(分鐘)之間的函數(shù)關(guān)系式是( 。
A.$y=-18cos\frac{π}{12}(x+1)+20$B.$y=-18cos\frac{π}{12}(x-1)+20$
C.$y=-18cos\frac{π}{6}(x+\frac{1}{2})+20$D.$y=-18cos\frac{π}{6}(x-\frac{1}{2})+20$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,A,B,C是⊙O上的三點,點D是劣弧$\widehat{BC}$的中點,過點B的切線交弦CD的延長線于點E.若∠BAC=80°,則∠BED=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,P為⊙O外一點,PA是⊙O的切線,A為切點,割線PBC與⊙O相交于B,C兩點,且PC=3PA,D為線段BC的中點,AD的延長線交⊙O于點E.若PB=1,則PA的長為3;AD•DE的值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知偶函數(shù)f(x)是定義在{x∈R|x≠0}上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x<0時,f′(x)>$\frac{f(x)}{x}$恒成立,設(shè)m>1,記a=$\frac{4m•f(m+1)}{m+1}$,b=2$\sqrt{m}$•f(2$\sqrt{m}$),c=(m+1)•f($\frac{4m}{m+1}$),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x+3|的最小值為m.
(1)求m的值;
(2)若正實數(shù)a,b,c滿足a2+ac+ab+bc=m,求2a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,D為BC中點,直線AB上的點M滿足:3$\overrightarrow{AM}$=2λ$\overrightarrow{AD}$+(3-3λ)$\overrightarrow{AC}$(λ∈R),則$\frac{|AM|}{|MB|}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}、{bn}滿足:an+bn=2n-1,n∈N*
(1)若{an}的前n項和Sn=2n2-n,求{an}、{bn}的通項公式;
(2)若an=k•2n-1,n∈N*,數(shù)列{bn}是單調(diào)遞減數(shù)列,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案