四棱錐S-ABCD的底面是菱形,SD⊥平面ABCD,點E是SD的中點.
(Ⅰ)求證:SB∥平面EAC;
(Ⅱ)求證:平面SAC⊥平面SBD.
考點:平面與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)連結(jié)AC,BD,交于點O,連結(jié)OE,由三角形中位線得OE∥SB,由此能證明SB∥平面EAC.
(Ⅱ)由菱形性質(zhì)得AC⊥BD,由線面垂直得SD⊥AC,由此能證明平面SAC⊥平面SBD.
解答: 證明:(Ⅰ)連結(jié)AC,BD,交于點O,連結(jié)OE,
∵ABCD是菱形,∴O是AC中點,
又E是SD中點,∴OE∥SB,
∵OE?平面AEC,SB?平面AEC,
∴SB∥平面EAC.
(Ⅱ)∵ABCD是菱形,∴AC⊥BD,
∵SD⊥平面ABCD,AC?平面ABCD,
∴SD⊥AC,
∵SD∩BD=D,
∴AC⊥平面SBD,
∵AC?平面SAC,∴平面SAC⊥平面SBD.
點評:本題考查直線與平面平行的證明,考查平面與平面垂直的證明,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥面ACD,DE⊥面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點,
(1)求證:AF∥面BCE;
(2)求二面角A-CE-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,點(an+2,Sn+1)在直線y=4x-5上,其中n∈N*,令bn=an+1-2an,且 a1=1.
(1)求{bn}的通項公式;
(2)若存在數(shù)列{Cn}滿足等式:bn=
C1
1
+
C2
2
+
C3
3
+…+
Cn
n
(n∈N*),求{Cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,棱柱ABCD-A1B1C1D1的所有棱長都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)證明:BD⊥AA1;
(2)求二面角A1-C1D-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),x∈D,若存在x1、x2∈D,對任意的x∈D,都有f(x1)≤f(x)≤f(x2),則稱f(x)為“幅度函數(shù)”,其中f(x2)-f(x1)稱為f(x)在D上的“幅度”.
(1)判斷函數(shù)f(x)=
3-2x-x2
是否為“幅度函數(shù)”,如果是,寫出其“幅度”;
(2)已知x(y-1)-2n-1y+2n=0(x∈Z,n為正整數(shù)),記y關(guān)于x的函數(shù)的“幅度”為bn,求數(shù)列{bn}的前n項和Sn;
(3)在(2)的條件下,令g(n)=lg
2
bn+1
+lg
2
bn+2
+…+lg
2
b2n
,求g(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*
(1)求數(shù)列{an}的通項公式;
(2)令bn=
2n-1
(an-1)(2an-1)
,記數(shù)列{bn}的前n項和為Sn,其中n∈N*,求證:
1
3
≤Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,除棱PC外,其余棱均等長,M為棱AB的中點,O為線段MC上靠近點M的三等分點.
(1)若PO⊥MC,求證:PO⊥平面ABC;
(2)試在平面PAB上確定一點Q,使得OQ∥平面PAC,且OQ∥平面PBC,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三角形的兩個頂點是O(0,0)和A(6,0),則它的外接圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=ln(4x-x2)的定義域為A,B=(-∞,-1]∪[3,+∞),則A∩B=
 

查看答案和解析>>

同步練習(xí)冊答案