7.已知$\overrightarrow{a}$=2(cosωx,cosωx),$\overrightarrow$=(cosωx,$\sqrt{3}$sinωx)(其中0<ω<1),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,
(1)若直線x=$\frac{π}{3}$是函數(shù)f(x)圖象的一條對稱軸,先列表再作出函數(shù)f(x)在區(qū)間[-π,π]上的圖象.
(2)求函數(shù)y=f(x),x∈[-π,π]的值域.

分析 (1)利用兩個向量的數(shù)量積公式,三角恒等變換化簡函數(shù)的解析式,再用用五點法作函數(shù)y=f(x)在區(qū)間[-π,π]上的圖象.
(2)由題意利用正弦函數(shù)的定義域和值域,求得函數(shù)y=f(x),x∈[-π,π]的值域.

解答 解:(1)函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$=2cos2ωx+2$\sqrt{3}$sinωxcosωx=cos2ωx+$\sqrt{3}$sin2ωx+1=2sin(2ωx+$\frac{π}{6}$)+1,
若直線x=$\frac{π}{3}$是函數(shù)f(x)圖象的一條對稱軸,則2ω•$\frac{π}{3}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
即ω=$\frac{3k}{2}$+$\frac{1}{2}$,k∈Z,
結(jié)合0<ω<1,可得ω=$\frac{1}{2}$,故f(x)=2sin(x+$\frac{π}{6}$)+1.
列表:

x+$\frac{π}{6}$-$\frac{5π}{6}$-$\frac{π}{2}$0$\frac{π}{2}$π$\frac{7π}{6}$
x-$\frac{2π}{3}$-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$π
y0-11310
函數(shù)f(x)在[-π,π]的圖象如圖所示:

(2)根據(jù)x∈[-π,π],可得x+$\frac{π}{6}$∈[-$\frac{5π}{6}$,$\frac{7π}{6}$],sin(x+$\frac{π}{6}$)∈[-1,1],故函數(shù)f(x)的值域為[-1,3].

點評 本題主要考查兩個向量的數(shù)量積公式,三角恒等變換,用五點法作函數(shù)y=Asin(ωx+φ)的圖象,正弦函數(shù)的定義域和值域,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.△ABC的三個內(nèi)角為A、B、C,若$\frac{{sinA+\sqrt{3}cosA}}{{cosA-\sqrt{3}sinA}}=tan\frac{7π}{12}$,則sin2B+2cosC的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x3+3ax2
(Ⅰ) 若a=-1,求f(x)的極值點和極值;
(Ⅱ) 求f(x)在[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.為了解某單位員工的月工資水平,從該單位500位員工中隨機抽取了50位進行調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:
月工資
(單位:百元)
[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
男員工數(shù)1810644
女員工數(shù)425411
(1)試由圖估計該單位員工月平均工資;
(2)現(xiàn)用分層抽樣的方法從月工資在[45,55)和[55,65)的兩組所調(diào)查的男員工中隨機選取5人,問各應(yīng)抽取多少人?
(3)若從月工資在[25,35)和[45,55)兩組所調(diào)查的女員工中隨機選取2人,試求這2人月工資差不超過1000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=2x+a,g(x)=lnx-2x,如果對任意的${x_1},{x_2}∈[{\frac{1}{2},2}]$,都有f(x1)≤g(x2)成立,則實數(shù)a的取值范圍是(-∞,ln2-8].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知{an}是等比數(shù)列,那么下列結(jié)論錯誤的是( 。
A.${a_5}^2={a_3}•{a_7}$B.${a_5}^2={a_1}•{a_9}$
C.${a_n}^2={a_{n-1}}•{a_{n+1}}({n∈{N^*}})$D.${a_n}^2={a_{n-k}}•{a_{n+k}}({k∈{N^*},n>k>0})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.國內(nèi)某汽車品牌一個月內(nèi)被消費者投訴的次數(shù)用X表示,據(jù)統(tǒng)計,隨機變量X的概率分布如下:
 X 0 2
 P 0.10.3  2a
(1)求a的值;
(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該汽車品牌在這兩個月內(nèi)共被消費者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.下面是被嚴重破壞的頻率分布表和頻率分布直方圖,根據(jù)殘表和殘圖,則 p=30,q=0.1.
分數(shù)段 頻數(shù) 
[60,70) p 
[70,80)90  
[80,90) 60 
[90,100] 20 q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=-x3+3x2+9x+a(a為常數(shù)).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值是20,求f(x)在該區(qū)間上的最小值.

查看答案和解析>>

同步練習冊答案