分析 由橢圓的方程,設(shè)P點(diǎn)坐標(biāo),利用余弦定理求得|F1P|•|PF2|,根據(jù)三角形的面積公式求得面積S,利用三角形面積相等,即${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$丨F1F2|•y0,即可求得y0,代入橢圓方程,即可求得P點(diǎn)坐標(biāo).
解答 解:由橢圓$\frac{x^2}{16}+\frac{y^2}{9}$=1,
a=4,b=3,c=$\sqrt{7}$,
又∵P是橢圓第一象限的點(diǎn)(x0,y0),y0>0,∠F1PF2=60°,F(xiàn)1、F2為左右焦點(diǎn),
∴|F1P|+|PF2|=2a=8,|F1F2|=2c=2$\sqrt{7}$,
∴|F1F2|2=|PF1|2+|PF2|2-2|F1P|•|PF2|cos60°,
=(|PF1|+|PF2|)2-2|F1P||PF2|-2|F1P|•|PF2|cos60°,
=64-3|F1P|•|PF2|,
∴64-3|F1P|•|PF2|=28,
∴|F1P|•|PF2|=12.
∴${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$|F1P|•|PF2|sin60°=3$\sqrt{3}$,
由${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$丨F1F2|•y0=3$\sqrt{3}$,
解得:y0=$\frac{3\sqrt{21}}{7}$,
將y0=$\frac{3\sqrt{21}}{7}$,代入橢圓方程,解得:x0=$\frac{8\sqrt{7}}{7}$,
∴P點(diǎn)坐標(biāo)為:$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$,
故答案為:$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查余弦定理及三角形的面積公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若“x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題 | |
B. | 在△ABC中,sinA>sinB的充要條件是A>B | |
C. | 函數(shù)f(x)=sinx+$\frac{4}{sinx}$,x∈(0,π)的最小值為4 | |
D. | ?x∈R,使得sinx•cosx=$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{13}{5}$+$\frac{1}{5}$i | B. | -$\frac{13}{5}$-$\frac{1}{5}$i | C. | $\frac{13}{5}$+$\frac{1}{5}$i | D. | $\frac{13}{5}$-$\frac{1}{5}$i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com