設(shè)f(x)=
1
3
x3+
1
2
ax2+2bx+c
,當(dāng)x∈(0,1)時(shí)取得極大值,當(dāng)x∈(1,2)時(shí)取得極小值,則
b-3
a+2
的取值范圍為
(-∞,-3)∪(2,+∞)
(-∞,-3)∪(2,+∞)
分析:據(jù)極大值點(diǎn)左邊導(dǎo)數(shù)為正右邊導(dǎo)數(shù)為負(fù),極小值點(diǎn)左邊導(dǎo)數(shù)為負(fù)右邊導(dǎo)數(shù)為正得a,b的約束條件,據(jù)線性規(guī)劃求出最值.
解答:解:∵f(x)=
1
3
x3+
1
2
ax2+2bx+c
,
∴f′(x)=x2+ax+2b,
∵函數(shù)f(x)在區(qū)間(0,1]內(nèi)取得極大值,在區(qū)間(1,2]內(nèi)取得極小值
∴f′(x)=x2+ax+2b=0在(0,1]和(1,2]內(nèi)各有一個(gè)根,
f′(0)>0,f′(1)≤0,f′(2)≥0
b>0
a+2b+1≤0
a+b+2≥0
,
在aOb坐標(biāo)系中畫(huà)出其表示的區(qū)域,如圖,
b-3
a+2
表示點(diǎn)A(-2,3)與可行域內(nèi)的點(diǎn)B連線的斜率,
∵M(jìn)(-1,0),∴kAM=-3,
∵N(-3,1),∴kAN=2,
結(jié)合圖象知
b-3
a+2
的取值范圍是(-∞,-3)∪(2,+∞).
故答案為:(-∞,-3)∪(2,+∞).
點(diǎn)評(píng):本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,綜合性強(qiáng),難度大,對(duì)數(shù)學(xué)思維能力要求較高,要求學(xué)生會(huì)進(jìn)行簡(jiǎn)單的線性規(guī)劃的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
13
x3-(1+a)x2+4ax+24a
,其中a∈R.
(1)若f(x)有極值,求a的取值范圍;
(2)若當(dāng)x≥0,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=-
1
3
x3+
1
2
x2+2ax

(1)若f(x)在(
2
3
,+∞)
上存在單調(diào)遞增區(qū)間,求a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]的最小值為-
16
3
,求f(x)在該區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
1
3
x3-
1
2
ax2+(a-1)x
(a∈R).
(1)若x=1是函數(shù)f(x)的極大值點(diǎn),求a的取值范圍;
(2)若在x∈[1,3]上至少存在一個(gè)x0,使f(x0)≥2成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
13
x3-ax2+(a-1)x

(1)若f(x)在x=1處 切線的斜率恰好為1,求a的值;
(2)若f(x)在(0,1)內(nèi)遞減,求a的取值范圍;又若此時(shí)f(x)在x1處取極小值,在x2處取極大值,判斷x1、x2與0和1的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=-
1
3
x3+
1
2
x2+2ax

(1)若f(x)在(
2
3
,+∞)
上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[1,4]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案