【題目】在正方體中,,以為球心,為半徑的球與棱,分別交于兩點,則二面角的正切值為( )

A. B. C. D.

【答案】B

【解析】分析:設棱長為4,果然年紀勾股定理計算AF,AG可得AFG和EFG均為等腰三角形,作出兩三角形的底邊上的高AM,EM,則AME為所求角.

詳解:設正方體棱長為4,則AE=1,EB=3,∴EF=EG=EC==5,

∴AF==2,DE==

∴A1F==2,DG==2

∴D1F=D1G=4﹣2,F(xiàn)G=D1F=4﹣4,

∴FM=FG=2﹣2,

取FG的中點M,連接AM,EM,

∵△AFG和EFG均為等腰三角形.

∴AM⊥FG,EM⊥FG,

∴∠AME為二面角A﹣FG﹣E的平面角,

∵AM==2+2,

∴tan∠AME===

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤=總收益-總成本.

(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);

(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關系進行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2)

根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù) (顆)和溫差具有線性相關關系。

(1)求綠豆種子出芽數(shù) (顆)關于溫差的回歸方程;

(2)假如4月1日至7日的日溫差的平均值為11℃,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)。

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點與其短軸的一個端點是等邊三角形的三個頂點,點在橢圓上,直線與橢圓交于,兩點,與軸,軸分別交于點,且,點是點關于軸的對稱點,的延長線交橢圓于點,過點,分別作軸的垂線,垂足分別為,.

(1)求橢圓的方程;

(2)是否存在直線,使得點平分線段?若存在,求出直線的方程,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過拋物線的焦點且與此拋物線交于兩點,,直線與拋物線交于,兩點,且兩點在軸的兩側.

(1)證明:為定值;

(2)求直線的斜率的取值范圍;

(3)若為坐標原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關系進行了分析研究,分別記錄了2016121日至125日每天的晝夜溫差以及實驗室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:

日期

121

122

123

124

125

溫差x/

10

11

13

12

8

發(fā)芽數(shù)y/

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進行檢驗.

(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.

(2)若選取的是121日和125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關于x的線性回歸方程.

(3)由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計當溫差為9 ℃時,100顆種子中的發(fā)芽數(shù).

附:回歸方程中斜率和截距的最小二乘法估計公式分別為: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在中,,,,、分別是、上的點,且,將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面

(Ⅱ)當長為多少時,異面直線,所成的角最小,并求出此時所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的奇函數(shù)滿足,且當時,,則下列結論正確的是( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案