【題目】已知直線經(jīng)過拋物線的焦點且與此拋物線交于,兩點,,直線與拋物線交于,兩點,且,兩點在軸的兩側.
(1)證明:為定值;
(2)求直線的斜率的取值范圍;
(3)若(為坐標原點),求直線的方程.
【答案】(1)見解析;(2);(3).
【解析】分析:(1)可設l的方程為y=k(x﹣1),k≠0,聯(lián)立,可得ky2﹣4y﹣4k=0,根據(jù)韋達定理即可證明,
(2)根據(jù)韋達定理和拋物線的性質可得k2>1,再聯(lián)立,得x2﹣kx+k﹣4=0,根據(jù)M,N兩點在y軸的兩側,可得△=k2﹣4(k﹣4)>0,即k<4,即可求出k的范圍,
(3)設,,則,,利用根與系數(shù)關系表示,即可得到直線的方程.
詳解:(1)證明:由題意可得,直線的斜率存在,故可設的方程為,
聯(lián)立,得,則為定值.
(2)解:由(1)知,, ,
則 ,即.
聯(lián)立,得,
∵,兩點在軸的兩側,∴ ,且,∴.
由及可得或,
故直線的斜率的取值范圍為.
(3)解:設,,則,,
∴
,
解得或,又,∴,
故直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,是橢圓上在第二象限內的一點,且直線的斜率為.
(1)求點的坐標;
(2)過點作一條斜率為正數(shù)的直線與橢圓從左向右依次交于兩點,是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】人的卷舌與平舌(指是否能左右卷起來)同人的眼皮單雙一樣,也是由遺傳自父母的基因決定的,其中顯性基因記作D,隱性基因記作d;成對的基因中,只要出現(xiàn)了顯性基因,就一定是卷舌的(這就是說,“卷舌”的充要條件是“基因對是,或”).同前面一樣,決定眼皮單雙的基因仍記作B(顯性基因)和b(隱性基因).
有一對夫妻,兩人決定舌頭形態(tài)和眼皮單雙的基因都是,不考慮基因突變,求他們的孩子是卷舌且單眼皮的概率.(有關生物學知識表明:控制上述兩種不同性狀的基因遺傳時互不干擾).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 ,過直線:上任一點向拋物線引兩條切線(切點為,且點在軸上方).
(1)求證:直線過定點,并求出該定點;
(2)拋物線上是否存在點,使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),曲線的參數(shù)方程為(為參數(shù),且).
(1)以曲線上的點與原點連線的斜率為參數(shù),寫出曲線的參數(shù)方程;
(2)若曲線與的兩個交點為,直線與直線的斜率之積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知傾斜角為的直線經(jīng)過點.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為
(1)寫出曲線的普通方程;
(2)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生產(chǎn)企業(yè)對其所生產(chǎn)的甲、乙兩種產(chǎn)品進行質量檢測,分別各抽查6件產(chǎn)品,檢測其重量的誤差,測得數(shù)據(jù)如下(單位:):
甲:13 15 13 8 14 21
乙:15 13 9 8 16 23
(1)畫出樣本數(shù)據(jù)的莖葉圖;
(2)分別計算甲、乙兩組數(shù)據(jù)的方差并分析甲、乙兩種產(chǎn)品的質量(精確到0.1)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com