1.已知條件p:函數(shù)$y=\sqrt{\frac{x-1}{x+3}}$的定義域,條件q:5x-6>x2,則¬p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

分析 根據(jù)所給的兩個命題,解不等式解出兩個命題的x的值,從x的值的范圍大小上判斷出兩個命題之間的關(guān)系,從而看出兩個非命題之間的關(guān)系.

解答 解:∵p:$\frac{x-1}{x+3}$≥0,
∴x≥1或x<-3
∵q:5x-6>x2,
∴2<x<3,
∴q⇒p,
∴-p⇒-q
∴-p是-q的充分不必要條件,
故選A.

點評 本題考查兩個條件之間的關(guān)系,是一個基礎(chǔ)題,這種題目經(jīng)常出現(xiàn)在高考卷中,注意利用變量的范圍判斷條件之間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)P為雙曲線$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{25}$=1右支上的任意一點,O為坐標原點,過點P作雙曲線兩漸近線的平行線,分別與兩漸近線交于A,B兩點,則平行四邊形PAOB的面積為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線經(jīng)過點$({2\sqrt{2},1})$,其一條漸近線方程為$y=\frac{1}{2}x$,則該雙曲線的標準方程為$\frac{x^2}{4}-{y^2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A={-1,0,1,2,3},$B=\{x|\frac{1}{{\sqrt{x-1}}}≥1\}$,則A∩B的元素個數(shù)為( 。
A.2B.5C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-ax+21n x.
(1)若函數(shù)y=f(x)在定義域上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)設(shè)f(x)有兩個極值點x1,x2,若x1∈(0,$\frac{1}{e}$],且f(x1)≥t+f(x2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{AB}=({0,2,1})$,$\overrightarrow{AC}=({-1,1,-2})$,則平面ABC的一個法向量可以是(  )
A.(3,-1,-2)B.(-4,2,2)C.(5,1,-2)D.(5,-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.同時拋擲兩枚均勻地骰子,所得點數(shù)之和為8的概率是$\frac{5}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a>0且a≠1,設(shè)命題p:函數(shù)y=loga(x+1)在區(qū)間(-1,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+(2a-3)x+1與x軸有兩個不同的交點.如果p或q為真命題,那么a的取值集合是怎樣的呢?并寫出求解過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=3-2sinx的單調(diào)遞增區(qū)間為[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ](k∈z).

查看答案和解析>>

同步練習(xí)冊答案