分析 (1)問題轉(zhuǎn)化為2x2-ax+2≥0在(0,+∞)恒成立,分離參數(shù),求出a的范圍即可;
(2)求出f′(x),根據(jù)f(x)有兩個極值點x1,x2,可以確定x1,x2為f′(x)=0的兩個根,從而得到x1x2=1,可以確定x2>1,求解h(x1)-h(x2),構(gòu)造函數(shù)u(x)=x2-$\frac{1}{{x}^{2}}$-2lnx2,x≥1,利用導(dǎo)數(shù)研究u(x)的取值范圍,從而求出t的范圍.
解答 解:(1)f′(x)=2x-a+$\frac{2}{x}$=$\frac{{2x}^{2}-ax+2}{x}$,(x>0),
若函數(shù)y=f(x)在定義域上單調(diào)遞增,
則2x2-ax+2≥0在(0,+∞)恒成立,
即a≤2(x+$\frac{1}{x}$),而x+$\frac{1}{x}$的最小值是2,
故a≤4;
(2)∵f(x)=x2-ax+2lnx,
∴h′(x)=$\frac{{2x}^{2}-ax+2}{x}$,(x>0),
∵f(x)有兩個極值點x1,x2,
∴x1,x2為f′(x)=0的兩個根,即2x2-ax+2=0的兩個根,
∴x1x2=1,
∵x1∈(0,$\frac{1}{e}$],且axi=2xi2+1(i=1,2),∴x2∈[e,+∞),
∴f(x1)-f(x2)=(x12-ax1+2lnx1)-(x22-ax2+2lnx2)
=(-x12-1+2lnx1)-(-x22-1+2lnx2)
=x22-x12+2ln $\frac{{x}_{1}}{{x}_{2}}$=x22-$\frac{1}{{{x}_{2}}^{2}}$-2lnx22,(x2>1),
設(shè)u(x)=x2-$\frac{1}{{x}^{2}}$-2lnx2,x≥e,
∴u′(x)=$\frac{{2{(x}^{2}-1)}^{2}}{{x}^{3}}$≥0,u(x)在[e,+∞)遞增,
∴u(x)≥u(e)=e2-$\frac{1}{{e}^{2}}$-4,
∴t∈(-∞,e2-$\frac{1}{{e}^{2}}$-4].
點評 本題考查了導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,函數(shù)在某點取得極值的條件.求函數(shù)極值的步驟是:先求導(dǎo)函數(shù),令導(dǎo)函數(shù)等于0,求出方程的根,確定函數(shù)在方程的根左右的單調(diào)性,根據(jù)極值的定義,確定極值點和極值.過程中要注意運用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,一般導(dǎo)數(shù)的正負對應(yīng)著函數(shù)的單調(diào)性.利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,一般是求出導(dǎo)函數(shù)對應(yīng)方程的根,然后求出跟對應(yīng)的函數(shù)值,區(qū)間端點的函數(shù)值,然后比較大小即可得到函數(shù)在閉區(qū)間上的最值.屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平行移動$\frac{π}{6}$個單位長度 | B. | 向右平行移動$\frac{π}{6}$個單位長度 | ||
C. | 向左平行移動$\frac{π}{12}$個單位長度 | D. | 向右平行移動$\frac{π}{12}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{12}$個長度單位 | B. | 向右平移$\frac{π}{12}$個長度單位 | ||
C. | 向左平移$\frac{5π}{12}$個長度單位 | D. | 向右平移$\frac{5π}{12}$個長度單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com