A. | -3 | B. | -1 | C. | 1 | D. | 3 |
分析 聯(lián)立方程組,求出a,b,求出f(x)的導(dǎo)數(shù),通過(guò)討論c的范圍,得到函數(shù)f(x)的單調(diào)區(qū)間,求出f(x)的極大值,得到關(guān)于c的方程,解出即可.
解答 解:∵f(x)=x3+ax2+bx(a,b∈R),
∴f′(x)=3x2+2ax+b,
∵f(x)的圖象與x軸相切于一點(diǎn)(c,0),
∴$\left\{\begin{array}{l}{{3c}^{2}+2ac+b=0}\\{{c}^{2}+ac+b=0}\end{array}\right.$,解得 $\left\{\begin{array}{l}{a=-2c}\\{b{=c}^{2}}\end{array}\right.$,
∴f′(x)=(3x-c)(x-c),
c>0時(shí),令f′(x)>0,解得:x>c或x<$\frac{c}{3}$,
令f′(x)<0,解得:$\frac{c}{3}$<x<c,
∴f(x)在(-∞,$\frac{c}{3}$)遞增,在($\frac{c}{3}$,c)遞減,在(c,+∞)遞增,
∴f(x)極大值=f($\frac{c}{3}$)=4,解得:c=3,
c<0時(shí),令f′(x)>0,解得:x<c或x>$\frac{c}{3}$,
令f′(x)<0,解得:$\frac{c}{3}$>x>c,
∴f(x)在(-∞,c)遞增,在(c,$\frac{c}{3}$)遞減,在($\frac{c}{3}$,+∞)遞增,
∴f(x)極大值=f(c)=4,而f(c)=0,不成立,
綜上,c=3,
故選:D.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | $2\sqrt{2}$ | C. | $4\sqrt{2}$ | D. | $3+2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{1}{2},1}]$ | B. | [1,2] | C. | $[{0,\frac{1}{2}}]$ | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com