10.某公路段在某一時(shí)刻內(nèi)監(jiān)測到的車速頻率分布直方圖如圖所示.
(1)求縱坐標(biāo)中h的值及第三個(gè)小長方形的面積;
(2)求平均車速$\overline{v}$的估計(jì)值.

分析 (1)由頻率分布直方圖中所有小長形面積之和為1,能求出h=0.01,由此能求出第三個(gè)小長方形的面積.
(2)利用頻率分布直方圖能求出平均車速$\overline v$的估計(jì)值.

解答 解:(1)∵頻率分布直方圖中所有小長形面積之和為1,
∴10h+10×3h+10×4h+10×2h=1,
解得h=0.01,…(3分)
∴第三個(gè)小長方形的面積為:10×4h=10×0.04=0.4…(5分)
(2)由頻率分布直方圖得:
平均車速$\overline v$=0.01×10×45+0.03×10×55+0.04×10×65+0.02×10×75=62.…(10分)

點(diǎn)評 本題考查頻率分布直方圖等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查數(shù)形結(jié)合思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F(-c,0),右頂點(diǎn)為A,點(diǎn)E的坐標(biāo)為(0,c),△EFA的面積為$\frac{b^2}{2}$.
(I)求橢圓的離心率;
(II)設(shè)點(diǎn)Q在線段AE上,|FQ|=$\frac{3}{2}$c,延長線段FQ與橢圓交于點(diǎn)P,點(diǎn)M,N在x軸上,PM∥QN,且直線PM與直線QN間的距離為c,四邊形PQNM的面積為3c.
(i)求直線FP的斜率;
(ii)求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知O是三角形ABC所在平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{AP}=λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}})λ∈{R^+}$,則P點(diǎn)軌跡一定通過三角形ABC的( 。
A.內(nèi)心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)曲線f(x)=$\sqrt{{m^2}+1}cosx$(m∈R)上任一點(diǎn)(x,y)處切線斜率為g(x),則函數(shù)y=x2g(x)的部分圖象可以為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解不等式:x2>(k+1)x-k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+2ax+2lnx(a∈R),g(x)=2ex+3x2(e為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知AB為半圓O的直徑,點(diǎn)C為半圓上一點(diǎn),過點(diǎn)C作半圓的切線CD,過點(diǎn)B作BD⊥CD于點(diǎn)D.求證:BC2=BA•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面區(qū)域D={(x,y)|$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$},Z=$\frac{y}{x+2}$.若命題“?(x,y)∈D,Z≥m”為真命題,則實(shí)數(shù)m的最大值為( 。
A.$\frac{22}{15}$B.$\frac{2}{7}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案