3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(x+2),}&{x≥2}\\{{2}^{1-x},}&{x<2}\end{array}\right.$(a>0且a≠1),若f(6)+f(-1)=7,函數(shù)y=f(x)-b僅有一個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍為( 。
A.[$\frac{1}{2}$,2]B.($\frac{1}{2}$,2]C.[$\frac{1}{2}$,2)D.($\frac{1}{2}$,2)

分析 由已知函數(shù)解析式結(jié)合f(6)+f(-1)=7求得a值,把函數(shù)y=f(x)-b僅有一個(gè)零點(diǎn),即y=f(x)與y=b的圖象只有一個(gè)交點(diǎn),作出函數(shù)圖象,數(shù)形結(jié)合得答案.

解答 解:∵f(6)+f(-1)=7,∴l(xiāng)oga8+4=7,即loga8=3,∴a=2.
則$f(x)=\left\{\begin{array}{l}{lo{g}_{2}(x+2),x≥2}\\{{2}^{1-x},x<2}\end{array}\right.$,
函數(shù)y=f(x)-b僅有一個(gè)零點(diǎn),即y=f(x)與y=b的圖象只有一個(gè)交點(diǎn).
作出函數(shù)圖象如圖:
由圖象可得,實(shí)數(shù)b的取值范圍為:($\frac{1}{2}$,2).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)的判定定理,考查數(shù)學(xué)轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=40,則a3•a8的最大值為( 。
A.14B.16C.24D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中既是偶函數(shù),又在區(qū)間(0,1)上單調(diào)遞增的是( 。
A.y=cosxB.$y={x^{\frac{1}{2}}}$C.y=2|x|D.y=|lgx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P,Q,若∠PAQ=$\frac{π}{3}$,且$|{\overrightarrow{OQ}}|=3|{\overrightarrow{OP}}$|,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某超市對(duì)某月(30天)每天顧客使用信用卡購物的人數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的樣本莖葉圖,則該樣本的中位數(shù)、眾數(shù)、極差分別是( 。
A.44,45,56B.44,43,56C.44,43,57D.45,43,57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=(x2-2x)lnx+(a-$\frac{1}{2}$)x2+2(1-a)x+a.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)a≥0時(shí),f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$({\frac{π}{8},0})$是函數(shù)f(x)=sinωx+cosωx圖象的一個(gè)對(duì)稱中心,則ω的取值可以是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{2i}{1+i}$,則z•$\overline z$=( 。
A.2B.2iC.4D.4i

查看答案和解析>>

同步練習(xí)冊(cè)答案