A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$或1 | D. | $\frac{1}{3}$或-1 |
分析 由已知得$sinα+cosα=\sqrt{3}sinαcosα$,兩邊同時(shí)平方,能求出sinαcosα的值.
解答 解:∵$\frac{1}{sinα}$+$\frac{1}{cosα}$=$\sqrt{3}$,
∴$\frac{sinα+cosα}{sinαcosα}$=$\sqrt{3}$,
∴$sinα+cosα=\sqrt{3}sinαcosα$,
兩邊同時(shí)平方,得:1+2sinαcosα=3sin2αcos2α,
解得sinαcosα=1或sinαcosα=-$\frac{1}{3}$,
當(dāng)sinαcosα=1時(shí),(sinα+cosα)2=1+2sinαcosα=2sin2($α+\frac{π}{4}$)=3,不成立,
∴sinαcosα=-$\frac{1}{3}$.
故選:A.
點(diǎn)評(píng) 本題考查三角函數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意三角函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com